PROGRAMMING TIPS, PEEKS
AND POKES FOR THE TANDY
PORTABLE COMPUTERS

BY TONY B. ANDERSON

Copyright 1989 Tony B. Anderson

All Rights Reserved

This book is a compilation of previously published articles and new material;
no portion of this text may be reproduced in any form, or distributed in any
manner without the express written permission of the author. Permission is
hereby granted for individual, non-commercial use of the information contained
herein.

Self-published
by
Tony B. Anderson
Post Office Box 60925
Reno, NV 89506

Chapter

(Yoo - BEN I NV, T S WU oS I

22
23
24
25

e owee emme s AR G R e Ges AR GEB .o aee Bee Geee BER Gee W SR
=
o~

26
27
28

29
30
31

TABLE OF CONTENTS

PROGRAMMING TIPS, PEEKS AND POKES FOR THE TANDY PORTABLE COMPUTERS

- - - Page

Programming Tips:

Substring Pointers eeessssssssccsssssssccssssscssnesssns .o
Calculating the date, "n" days ago sssssesssscsssssnnsasns
A neat PRINTUSING technique «cccccscsssossscsasscnnsasesnns
Line drawing with the LINE statement seesecccsccenccsocsss
Is a file resident in RAM? ccccccscsonansssasesssssssssancs
Manipulating date Strings eeccececsssscrsssssescsssacnssccs
Self=killing programs «sssssssssssssssssesscsssssnsssnnnns
Looking at pixels and the MOD statement eecceccece. ccaccas
Converting letter cases (upper to lower and vice versa)...
Which model are you using? seseeeessssccevsssssssssnnasnsss
Using the MAXFILES statement eceeececececcscccsvccnsccassncns
REM vSe the * Mark eecessssccessssssssssssscsssscsccosansnse
The random number Zenerator ceescesssccscassessssscasonans
Using the bottom screen 1ine seeseecsccesssssssssssasansas
Elegant BASIC programming tipS eseesescsssescscrscncanscsces
Use of Control and Escape Codes for screen functions
Looking into the RAM directory escecesresscccscscncascnsnns
Disabling the BREAK, “C, and Function keys sececcesacccsns
Getting started in assembly language «csceessscsscssssoces
Paging in TELCOM for neat printouts sesesesecsscsecsrennns
How to hide machine language in a BASIC program essseeecees

Peeking and Poking Around:

Common pokes for the 100/102 ccccoessecccccsancescaccnsoncs
Common pokes for the Tandy 200 .cevcevecccsnensssnsssscnsss

Additional useful Pokes e e e s et s e NssBBs SN BRERERSE RO RES
High memory mﬂp ® 9 P PGS LRI OSSP EIEEEREEEEIERSEBRBRREBEEEOEREES

CALLing ROM routines:

Removing ROM program names from the Menu «ecececcscccsacass
LOtS Of uSEful CALL,S s e e s e s BB e e se RO EBGEBsBEEGEEBRSERSEBOESES
RoMmap addresses LU I I I I I I I I I R I I B B B B B B

Resources I I A A B A A B A B A BT A BB AT A A NC R B B B AN B I N I 2 BRI I B

Loading and Running Machine Language Programs s+esssccscccss
Cassette Use CEC R I A B N I I IR R R I B I B R B R R B B B B B L B B L

Addenda: Production note/Program diSk sssscecscsccacnsnscs

N £~

14
17
19
21
23
25
28
29
32
34
36
39
44
46
51
54

58
63
67
70

78
80
83

88
93
95

98

CHAPTER 1

Substring Pointers

This chapter describes a method of extracting the position in a string, of
a sub=-string, where there may be upper or lower-case versions of the
sub-string in the main String. The resulting position pointer is reduced
to a specific location pointer that can be used by an ON GOTO or ON GOSUB
statement without repeating the line numbers.

Copyright 1985 Tony B. Anderson
All Rights Reserved

While writing a program for a client, which displays Race Track Speed Ratings,
I developed the following technique to extract an ON GOTO pointer from a
string which listed the abreviations of the target Race Tracks. The technique
would be useful anytime one wishes to allow for Upper or Lower Case input,

and extract the position in the string.

Note the AS$ string in line #100, below. You will see it holds the Track Name
abbreviations (2 or 3 characters) in both Upper and Lower Case. SA = Santa
Anita; HOL = Hollywood, etc. I added a space to any abreviation that was only
two characters, to make each one the same length.

The FOR-NEXT loop starting in line 150 only prints the Upper Case abreviations
on the screen.

The input routine in lines 200-220 gets the desired track abreviation, in
either upper or lower case.

The INSTR routine in the first half of line 230, finds out if the specified
track abreviation is in the A$ string; and sets A to = the position in the
string. (Note there is no error-trap here) For example, for HOL, A=7; for
domr, A=16 (etc). Then the number of characters necessary to get to the start
of the next group is added, in this case, since we are dealing with
three-character groups, we add +2. Thus, for HOL, A=9; and for dmr, A=18.

Variable A is then divided by 3 (the number of characters in a sub=-group,
and 1 is added to the total. This sets variable A to 2 for "SA" and 3 for
"sa". (4 for "HOL", and 5 for "hol") The last part of line 230 reduces
this figure to the single integer that points to the position in the string

for either Upper or Lower Case letters identifying each track. i.e. Both
"DMR" and "dmr" are identified as a "3".

In Line 240, the variable A is used to go to a routine which calculates the
track speed records.

100 A$=""SA sa HOLholDMRdmrAC ac BM bm GG gg POMpomLA la BELbelAP ap GP gp CALcal"
110 PR$="Press ENTER to Continue: "

120 N=11:

* Set # of Tracks

130 CLS:PRINT@10,"Speed Rating Values'":PRINT@50,"for Selected Tracks":PRINT
140 PRINT"The following Tracks are Supported:"
150 FORA=ITON

160 PRINTMIDS(AS,A*6=5,3);:IFMIDS$(AS,A*6=3,1)<>" "THENPRINT" ";

170 NEXT:

PRINT:PRINT

180 PRINTPRS; :Q$=INPUTS(1)

190 CLS

200 PRINT@200,"Enter Track and Distance, separated by"

205 PRINT"a comma, or ENTER to quit: ";

210 B$=""":D=0:INPUTBS,D:CLS

220 I[F BS$="" THEN MENU

230 A=(INSTR(AS$,BS$)+2)/3+1:A=INT(A/2)

240 onNaAGoTO 300,301,302,303,304,305,306, 307,308,309,310,303

Now, I know, you can also simply use a multiple ON-GOTO statement, using the

value of

A obtained in the first part of line 230. But that would require

double entries in the ON-GOTO statement, like this:

240 ON A

Goro 300,300,301,301,302,302,303,303,304,304,305,305.....(etc)

But in this case I wanted to eliminate all those double GOTO’s, because the
program will be expanded, and the single GOTO’s will even become cumbersome.

Another way of accomplishing the same objective was sent to me by EIJI MIURA,
a CompuServe subscriber:

100
110
120
130
140
150
160
170
180
190
200
205
210
220
225
230
240

converts
twice as

A$=""SA HOLDMRAC BM GG POMLA BELAP GP CAL"

PR§="Press ENTER to Continue:"

N=11: “ Set # of Tracks

CLS:PRINT@10,"Speed Rating Values':PRINT@50,"for Selected Tracks'":PRINT
PRINT"The following Tracks are Supported:"

FORA=1TON*3STEP3

PRINTMIDS (A$,A,3) ;: IFMID$(AS,A+2,1)<>" "THENPRINT" ";

NEXT :PRINT:PRINT

PRINTPRS;:Q$=INPUTS(1)

CLS

PRINT@200,"Enter Track and Distance, separated by"

PRINT"a comma, or ENTER to quit: ";

B$="":D=0:INPUTBS,D:CLS

IF BS$="" THEN MENU

FORG=1TOLEN(BS) : F=ASC(MID$(B$,G,1)):IFF>96ANDF<123THENMIDS(BS,G,1)=CHRS(F-32)
NEXT

ON(INSTR(A$,B$)+2)/3GOTO 300,301,302,303, 304,305,306, 307,308,309, 310:GOTO130

A$ in line 100 doesn’t have lower case entries. I added line 225 which

lower case input into uppercase. This way, you don’t have to spend
much memory as necessary in A$, and by making the line 255 into

subroutine, you can GOSUB from anywhere in the program where you need lower

-2 -

to upper case conversion which saves even more bytes. Short examples like this
one don’t show much difference in memory size, but it will show a significant
difference in longer programs which have several ON GOTO statements. The

GOTO 130 at the end of line 240 will return to the original prompt when the
program doesn’t find a matching string in AS.

CHAPTER 2

Calculating the Date

This chapter describes a programming technique used to determine the date
"n" days ago. It might be useful in financial applications, or in other
programs which need to supply the date "n" days ago. Method of
disassemling the DATES string, and reassembling it with another date is

also apparent.

Copyright 1985 Tony B. Anderson
All Rights Reserved

I had occasion to write the following routine which calculates the exact date,
"n'" days ago. Seems this might be useful in financial applications, and some

database programs which look for activity within the last "n" days, or similar
applications. :

35 DATA 12,31,11,30,10,31,9, 30,8,31,7,31,6,30,5,31,4,30,3,31,2,28,1,31,0, 31
36 DATA -1,30,-2,31,-3,30,-4,31,-5,31,-6,30,-7,31,-8,30,-9,31,-10,28,-11,31

100 N=45

300 PRINT@122,"Today s Date is: "DATES

301 PRINT" Is this correct? (Y/N): ":: $=INPUT$ (1) : IFAS=CHRS (13)THENAS="Y"
302 PRINTAS:IFINSTR("Yy",A$)THEN305

303 PRINT@120,CHR$(27)"J":PRINT@122, "What is today’s date';

304 INPUTAS:IFLEN(AS$)=8THENDATES=AS$: GOTO300ELSEBEEP:G0OT0303

305 M=VAL (LEFTS$ (DATES, 2)) :D=VAL(MIDS$(DATES,4,2)) : Y=VAL (MIDS$ (DATES,7,2))
306 READM1,N1:IFM1<MTHEN307ELSE306

307 A=N-D

308 IFA>0THENA=A-N1:READMI,N1:GOT0308

309 A=ABS(A):M1=M1+1:IFMI<ITHENY=Y-1

310 M=((M1+11)MOD12)+1

311 M$=STR$(M) :MS=MID$(M$,2) : IFLEN(M$)=1THENMS="0""+M$

312 A$=STRS(A):AS=MIDS(AS,2):IFLEN(AS)=1THENAS="0"+AS

313 Y$=STRS$(Y):YS=MIDS(Y$,2)

314 PRINT@122,"Date"N"days ago was: "M$"/"AS"/"¥Y$;CHRS(27)"J"

315 PRINT@202,"Press ENTER to continue: ";:A$=INPUTS(1)

Line 35-36 DATA statements contain the days in the months. Note counting back-
wards, 12 (December) = 31; 11 (November) = 30, etc.; down to 1 (January) = 31;

-4 =

then 0 (December, MOD 12) and -1 (November (MOD 12 -12), etc., down through
the 12 month calendar again.

Line 100: N = the value of the number of days prior to the current date. 1In
this example, it is a set value, but you could also get this value by asking
for input from the keyboard.

Lines 300-304 verify that the internal M100 calendar has not been accidently
changed, and that the date is correct. Otherwise, the internal calendar is
corrected.

Line 305 breaks the current date into: M=Month, D=Day, Y=Year.

Line 306 sets the DATA pointer to one less than the current month (M) (last
month), and gets the # of days in the (last) month.

Lines 307-308 sets the variable A to = N, less the number of days in the
current month, and compares if less than 0. If so, count has exceeded the
desired number of days, if not, the next month in the data statement is read,
getting the number of days in that month, and is subtracted from A again.

This continues, and variable A continues to be tested until it is less than O.

Line 309 sets the date of the target month by setting variable A (a negative
value) to a positive value, which will equal the target date. If the data
statement has read into the negative values, then the year counter (Y) is
reduced by 1 year.

Lines 310-314 reconstruct the date from variables M, A, and Y; and prints it on
the screen. The '"MOD 12" business in line 310 gets back to a positive month
number if the data has been read into the negative numbers, and keeps the

same month number if it is already positive.

Note that this routine does not test for '"Leap Years'" with 29 days in February.
You could add that feature by simply dividing the current year by MOD4, and

if there is no remainder, add 1 to the value of A before the day is determined
in line 312.

CHAPTER 3

A Neat PRINTUSING Technique

This chapter illustrates another method of combining the PRINT@ and
PRINTUSING statements with data strings, which is syntax-correct in
Microsoft BASIC in the Model 100/102 and Tandy 200.

Copyright 1985 Tony B. Anderson
All Rights Reserved

This is a bright adaptation of the PRINTUSING command, which is not explained
in the M100 manual; it is from a CompuServe user, Jim Moore.

Most of us are familiar with the PRINTUSING statement, but not the version
that Jim is using. Beginning programmers are often limited in using or
combining PRINT@ and PRINTUSING. Generally, If you want to use a text string

on the same line as a formatted number, you would structure your statement as
follows:

10 PRINT"Gallons of Product Left ="j;: PRINTUSING"###.##" ;N

Or, as we become more experienced, include the first string in the USING
statement as follows:

10 PRINTUSING"Gallons of Product Left = ###.##":N

And, if one wishes to specify on the screen where the statement is to be
printed, the PRINT@ specification can be incorporated as follows:

10 PRINT@45,USING"Gallons of Product Left = ###.##";N

However, Jim has illuminated a fourth approach that is acceptable as correct
syntax in Microsoft BASIC for the Model 100 family:

10 AS="(Filename)" :N=(computed value)
20 PRINT@124,A8;" Checksum = "; USING"#####, ###";N

Notice that he has included additional string data between the PRINTQ@
statement, and the USING statement! (I didn“t know you could do that!) This is
a unique variation, and one which opens additional programming short=cuts; you

can tack your formatted numerical data on the end of a PRINT(string) statement,

by just adding ";USING" followed by the USING specification and the variable
name. You do not have to use the "PRINT(string);:PRINTUSING" form. You can
save a couple of programming bytes every time you use this form.

Another trick is to predefine your USING format in a string, and use it as a
variable in this way:

10 AS="Gallons of fuel left = ###.##"
20 PRINTUSING AS$;N

or

20 PRINT@45,USING A$;N

There are many additional forms you can use, and several options in the format
specification statement; see the Model 100 manual, pages 170-172 for further
examples.

CHAPTER 4

The LINE Statement

This programming tip is a short tutorial on the use of the LINE statement
in BASIC, which can be used to draw lines or simple pictures on the LCD
screen of the Tandy portables.

Copyright 1985 Tony B. Anderson
All Rights Reserved

Drawing with the LINE statement:

Ive written a couple of BASIC programs using the LINE statement (BARCHT.100,
DBPADS.100, ISOBOX.100 and KLUGE.DMO, among others, and others which are not
yet published), and would like to offer this short tutorial on use of the LINE
statement, since the manual documentation is not as clear as it could be, and

it took me a lot of experimenting to find out what it all meant, and how it
worked.

First, let me describe what we are working with. TIf you look closely at the
LCD (Liquid Crystal Display) screen, you will see it is made up of lots and
lots of little dots. (Adjust the contrast knob on the right side of the
computer to get a clearer view, or use a magnifying glass.) Every letter,
symbol or graphic character on the screen is made by some of those dots being
black (PSET), and some of them being "not black" (PRESET).

The reason I chose to say 'not black" instead of white, or clear, lies in

the way the LCD screen actually works. Just for a brief overview, based on
what I°ve read, it appears that down at the molecular level, there are millions
of little molecules in each "dot". In the normal state, they exist in a
totally random pattern, and light waves can pass through them easily, and are
reflected off the silver grey coating at the back of the screen. But when a
small electrical charge is applied, all the molecules line up in the direction
of the current flow, and this blocks the passage of light waves, making the
"dot" appear black. It’s actually not black, but is preventing the "light"
from passing through. (OK, you engineer types, so that’s an oversimplification,
but it WILL serve to explain what’s happening.)

Now, each of those "dots" is called a "pixel", an abreviated form of the

"words PICture ELement, stolen from the television lexicon. (Somehow, the
abreviation PICEL just didn’t fit! So it got "adjusted" to PIXEL.)

Anyway, the LINE statement works at the pixel level, and for our purposes, we
can consider that it "turns on" the pixel (makes it black), which is
actually what’s happening.

- 8 -

—

At the pixel level, you have 240 pixels across the screen, which you can
consider as "columns'; and 64 pixels down the screen, which you can consider

as "rows". (The 200 has 128 rows of pixels down the screen, but the main body
of this discussion will relate to use with the 100/102 = you can make mental
changes where necessary.) In computerese, these rows are numbered starting at
zero instead of one, so the pixel numbers lie in the range of 0-239 horizontal,
and 0-63 vertical. By specifying a horizontal and a vertical position, you can
deal with a specific pixel. This is why they are referred to as "addressable";
each one has a specific address, consisting of its position, both horizontally,
and vertically. For example, there is only one pixel at the address 120,17;
and there is no duplication. That is the only pixel with that address. So, if
the computer turns on that pixel, it, and no other, will go "black".

Simple multiplication reveals that there are a total of 15,360 pixels in the
LCD screen, and somewhere, in some integrated circuit, somewhere in the
"internals" of the computer, are 15,360 transistors that turn their respective
pixels on and off.

Here are a couple of points of interest that may be useful later, when you are
actually using any of the pixel commands, including LINE, PSET, and PRESET;
since there are 8 lines on the LCD screen, made up of 64 rows of pixels,

each "line" is 8 pixels high. Since there are 40 columns of characters
displayed on the screen, and 240 pixels, each character can be 6 pixels wide.
In actual practice, however, there needs to be some little space between the
characters, so the characters are actually 5 pixels wide, with a 1 pixel

"of f" space between them. This gives you a character "map" of 8 x 5 pixels.

The first line on the screen, would consist of pixel rows 0-7; the second
line would be pixel rows 8-15, etc. The mid-screen position for the 2lst
character in a line would equate to pixel column 120 (multiply 20x6; the
number of character positions skipped, times the number of pixels in a
character width).

Remember, pixel rows l-64 are numbered from 0-63, and pixel columns 1-240 are
numbered from 0-239.

Back to the LINE statement: The general form for the statement is:
LINE(X1,Y1)-(X2,Y2)

It may be easiest to understand, if you mentally redefine the paramenters as
follows:

LINE (From C,R)=(To C,R)
where C = column, and R = row.

If you want a line drawn down the middle of the screen, for example, at pixel
column 120 (as figured above), then the proper form of the command would be:

LINE (120,0)-(120,63)

(Defined: From column 120, row 0, To column 120, row 63.) It’s as simple
as that, you specify where the line is to start, and where it is to end, by

-9 -

—

specifying the pixel addresses. And you can use variables, or computed
addresses, such as:

LINE(A,B+4#*X)=-(C-Y,D/17)

OK, now let’s get into the next parameter, and get a little more exotic.
The LINE statement allows two additional specifications; "Switch" and "Box
Fill". They are appended to the basic command with commas, in the form:

LINE(X1,Y1)-(X2,Y2),S,BF

The "switch" (variable S) can be any number. An odd value, such as "1"
tells the BASIC interpreter to turn the pixels on (make them black), and an
even value (0,2,4 etc) says to turn the pixels off, as in erasing any pixels
previously "set" or "on". "1" is assumed if no switch is specified.

The "Box Fill" command has two forms, "B" and "BF". The "B" command will

use the coordinates specified in the LINE statement to draw a square or
rectangular box. The "BF" will draw the identical box, but will set, or turn
on, all the pixels within the boundaries of that box, turning the whole box
black on the screen. Note that if you use either the B or BF, you must use a
switch specification, in almost all cases, it would be "1", to draw and/or
fill a box at the specified addresses.

Samples: LINE(20,10)-(100,40),1,B
LINE(20,10)-(100,40),1,BF

The first draws a box, and the second draws a filled box at the specified
coordinates. Interestingly, you can make a smaller box inside a larger
filled box, or vice-versa, resulting in some interesting displays.

Sample: LINE(20,10)-(100,40),1,BF : LINE(25,20)-~(95,30),0,B
Now we get to PSET and PRESET: which are operators of the LINE statement. PSET
is the simple command to turn on a specified pixel. The form is:

PSET (X,Y)

where X and Y specify the pixel address. "PSET" from the descriptor, "Point
Set".

PRESET is the complimentary command, turning off the pixel at the specified
address, and takes the same form:

PRESET (X,Y)

PRESET can be considered to mean "set the point to the condition before
being set." 1In other words, "Turn it off".

You could draw a line with the PSET command if you needed to, by putting

it in a FOR=-NEXT loop, but generally the LINE statement is simpler. However,
I did have to use this technique in the program BARCHT.100, where I wanted a

line of dots, rather than a solid line, down the center of the chart. The

=10 =

loop took the following form:

525 FOR X = 18 TO 52 STEP 2 : PSET(118,X) : NEXT

The "STEP" set every other pixel between 18 and 52.

Drawing Pictures:

Drawing simple pictures, or illustrations on the LCD screen is possible,

but takes some experimenting to accomplish, usually in the areas of defining
the correct starting and ending address for each line, or pixel set. It is not
an easy task, but can be accomplished through trial and error. Making a
preliminary drawing on a piece of graph paper helps a lot, in determining what
pixels need to be set, and where the lines need to start and stop. Just

draw a simulated screen on the graph paper, 64 squares high, and 240 squares
wide, and draw away. Then translate the graph paper addresses to screen
addresses.

By now, you should have a fair understanding of how the LINE statement works,
which can be used in your own programs. Here is a simple "Etch-a-Sketch type
program you can play with:

“ SKETCH. 100

 COPYRIGHT 1985 TONY B. ANDERSON

"ETCH-A-SKETCH" type program, starts by putting a dot in the center of the
screen; by pushing the arrow keys you make a dot next to the previous

dot, in the direction of the arrow.

Drawing a picture is a slow and laborious task. Be careful where you
put your next dot, as you can’t erase a mistake.

O~ NP W= O
.

20 CLS

30 Y=32:X=120

40 PSET(X,Y)

50 A$=INKEY$

60 IFA$=CHRS(28)THENX=X+1:GOT0110
70 IFA$=CHRS(29)THENX=X-1:GOT0110
80 IFA$=CHRS$(30)THENY=Y-1:GOTO0110

90 I[FA$=CHRS$(31)THENY=Y+1:GOTO110
100 GOTO50

110 PSET(X,Y)
120 GOTO50

=

CHAPTER 5

Opening One of Several Like Files

This file describes a technique which can be used to open whichever file
is resident in RAM from some sub=-set of files, which may form part of a
larger set. 1If lists are maintained, named LIST1, LIST2, LIST3 etc., the
program can open whichever one is actually there.

Copyright 1985 Tony B. Anderson
All Rights Reserved

I was looking for a way to find out, under program control, if a specific file
was resident in RAM. Some dialects of BASIC have a command for that function
which can be used in an IF statement, returning a "True" if the file is
resident in RAM or on disk, depending on the command specification.

In model 100 Microsoft BASIC, if a file is not resident and you open for output
or append, the file will be created. However, if you open for input, and the
file is not there, the program bombs, and you get an "FF" error (File not
Found). Lacking such a command in Model 100 Microsoft BASIC, I worked out the
following technique to check for resident files.

Assume your program normally works on lists, such as mailing lists, and your
lists are broken down into sub-lists, based on some important criteria such

as previous customers, products purchased, zip codes, etc. And your program
wants to open whichever file you have loaded... say for example you want to
mail a flyer to all the previous customers, and you have one, universal, label
printing program. Your previous customers might be saved in "LIST3", one of
several such lists, named LIST1, LIST2, LIST3, LIST4, etc.

This technique, added to your label printing program opens whatever file
happens to be resident and available.

10 ON ERROR GOTO 100: OPEN"LIST1.DO" FOR INPUT AS 1:GOTO 200
20 ON ERROR GOTO 110: OPEN"LIST2.DO'" FOR INPUT AS 1:GOTO 200
30 ON ERROR GOTO 120: OPEN"LIST3.DO" FOR INPUT AS 1:GOTO 200
40 ON ERROR GOTO 130: OPEN"LIST4.DO" FOR INPUT AS 1:GOTO 200
50 PRINT"No File Loaded into Memory':STOP

100 RUN20

110 RUN30

120 RUN4O

130 RUNS50

200 ON ERROR GOTO : REM Cancels previous error trap

210 REM Body of Label program starts here with correct file opened.

-12 =

Fred Dobbs, a CompuServe subscriber, sent me another way of doing the same
thing, which I include here for your information.

"Here’s a slightly neater solution to the problem. This program PEEKs into the
file directory (which starts at 63930D) and extracts the name of each active
.DO file in turn (the third part, plus of line 100 skips '"dead" files and .BA
files), loading into S1$. The 4th part of line 110 checks to see if SIS is
"LISTXX" (where "XX" is whatever #s or trailing characters are attached to the
resident file. If this check is positive, we return to the main program and
open the file. Otherwise, we go through another loop, until either the file has
been found, or we’ve gone through all files in the computer...in which case we
get to line 120 and are told, "Ain’t no such file!" This demonstration program
is, of course, "fancied up" to show off the file-finding feature. Cutting out
the bells and whistles, it‘s a nice, neat little routine. Hope this routine
proves useful. = Fred"

1 CLS:CLEAR2000:S1$="":MAXFILES=1:GOSUB100:0PENS1$FORINPUTAS]:SOUND1000, 64
3 IFNOTEOF (1)THENLINEINPUT#1,A$:PRINTA$:GOTO3ELSECLOSE:END

. (additional program lines...)

99 END

100 FORF=0TOl8:PTR=F#11+63930:A%Z=PEEK(PTR):IFA%Z<>192THENNEXT :GOT0120

110 FORJ=3T08:51%=S1$+CHRS(PEEK(PTR+J)) : NEXT

115 IFLEFTS$(S1$,4)="LIST"THENPRINT@130 ,"Found "514".DO" :RETURNELSES1S$=""":NEXT
120 PRINT"Ain“t no such file!'":END

- 13 -

CHAPTER 6

Manipulating DATE Strings

This chapter discusses date input in BASIC programs, error trapping for
incorrect input, and building a correct date field from varied input

forms. Sorting by date field; ASCII and the Hollerith code; and the "IBM
Date Format".

Copyright 1985 Tony B. Anderson
All Rights Reserved

Date Routine:

In many BASIC programs, it is necessary to input a date, in response to a
program prompt. Examples would be in bookkeeping programs, dated files,
expense or business records, etc. While in many cases, the date could be
supplied by the computer itself, in others, manual input is called for.

Generally, date input is not error trapped, and subsequent listing or program
operations that use the date string can lead to program crashes or data errors
if the date string was not entered in a uniform format which is accepted and
understood by the program.

The below routine is one method of error trapping for date input, allowing an
almost careless input, and constructing a correctly formed date string from
the entry, or from the computer calendar function itself.

Input as varied as 6,6; 7-18-83; 4/5 or 2/5/85 will be correctly formed
into a standard 8 character field, 06/06/85; 07/18/83; 04/05/85; and 02/05/85.
Incorrect, or unexpected input will be trapped.

100 A$="":LINEINPUT"Enter Date: ";AS

110 IFAS=""THENAS$=DATES$:GOT0200

120 P=INSTR(AS,",") :IFPTHENAS=LEFTS (AS,P-1)+"/"+MIDS(AS,P+1):GOTO120
130 P=INSTR(AS,"~"):IFPTHENAS=LEFTS$(AS$,P~1)+"/"4MID$(AS,P+1):GOTO130
140 IFINSTR(AS,"/")=0THEN190

150 IFMID$(AS,2,1)="/"THENAS=""0"+AS

160 IFLEN(A$)<=5THENA$=AS+RIGHTS$ (DATES, 3)

170 IFMID$(AS$,5,1)="/"THENAS=LEFTS(AS,3)+"0"+MIDS (AS, 4)

180 IFLEN(AS$)=8THEN200

190 BEEP:PRINT"Bad date. Try again.'":GOT0100

200 PRINTAS

Line 100 gets the input date. If there is no input (C/R or ENTER), then line

- 14 =

110 assigns the computer’s DATES string to A$ and goes on to line 200.

The date can be in almost any form; requiring only two numbers separated by a
comma, hyphen or slash, all common date delimiters. (Note that this routine
will work equally well with military, Canadian, or European date structures,
which generally place the date before the month, in the form: 16-08-85 for
16-AUG=-85.)

Lines 120 and 130 check to see if the comma or hyphen has been used in the
input, and if so, converts them to slashes.

Line 140 checks to make sure there is a valid delimiter in the string.

Line 150 will place a leading "0O" in the date, if needed, changing inputs of 1
through 9 into 0l through 09, conforming with the required 8 character date
structure.

In Line 160, if the year has not been input, as in the possible case of month

and day only (7/12, for example), the current year date is appended to the
string.

Line 170 makes sure day dates between 1 and 9 are converted to 0l through 09.

Line 180 is the final check. If the string does not equal 8 characters,
something is wrong, and you go back to try again. This test can be expanded
to include tests for correct "/" positions if needed.

180 IFLEN(AS$)=8ANDMID$(AS$,3,1)="/" ANDMID$(AS,6,1)="/"THEN200
Line 190 is an error message, and returns for new input.

Line 200, of course, is there so you can see the string that has been built,
and normally would lead into the rest of your program.

Sorting by Date String:

ASCII code (American Standard Code for Information Interchange) is a standard
based on the Hollerith code, which was developed by Herman Hollerith, for use
in the 1890 U.S. census. It was originally used to tally the results by
machine, using punched cards, similar to those used in IBM card sorters of
the mid 50°s and early 60°s, commonly called "keypunch" or "IBM cards".

In general, the ASCII code provides an easy method of sorting characters into
ascending or descending order, based on the number value assigned to the
character, but has some anomalies when sorting multiple character strings,
whether right to left, or left to right.

As an result of the popularity of IBM card sorters, a "standard" for sorting
cards by date came to be known as the "IBM Date Format". It places the year
first, followed by the month and the date, in a six digit field, in the form:

"850625" (June 25, 1985). This string form is still used today when it is
desirable to sort data by date, or by "date field".

- 15 =

Obviously, if you try to sort the following dates with a normal string sort,
working right to left (the common technique),

02/13/84
06/12/84
04/02/85

the result will be the April date (04), placed between the February (02) and
June (06) dates. This is the result of sorting each column of characters from
right to left in the field (least significant digit first). If you sort

left to right, the April date will be last, but the February date will come
after the June date. (13 comes after 12.) The proper way to construct these
strings for sorting is to put the year first:

840213 (or 84/02/13)

840612 (or 84/06/12)
850402 (or 85/04/02)

This always results in a correctly ordered sort where mixed years are involved.
The proper sort string can be constructed with the following statement (assume
the date is in the A$ string constructed above, in the form "06/12/85"):

210 A$=RIGHTS$(AS$,2)+LEFTS(AS,2)HMIDS(AS,4,2)
220 PRINTAS

Result: "850612"

By the way, "AS$" is supposed to be read and pronounced "A String", so the
y Yy P
phrase, "the A$ string", as used above, is redundant.

- 16 -

e AN Mol Lo e e ons SEe

CHAPTER 7

Self-Killing Programs

This chapter shows a technique which allows a program to kill itself from
memory after running.

Copyright 1985 Tony B. Anderson
All Rights Reserved

A number of times the question has been raised on various bulletin boards, "How
can I kill a program after running it, to remove it from memory?"

The obvious reply has been, ‘Type KILL"NAME.BA" and hit the ENTER key.”

But it is often useful to let a running program kill itself, so that when you
go back to the menu, the program itself, is gone.

If that is your interest, you can do it by adding the below lines to the bottom
of your progam instead of an END or MENU statement. Just renumber the lines to
suit your program, and put your program name in the A$ string in line 400,
instead of "NAME".

Lines 10 to 60 are just there to demonstrate the program for you. Save the
program as "NAME.BA" so it appears on the computer menu. Then run it, and
after running, it will be gone.

10 * NAME.BA

20 FORA=1T025

30 PRINTA;

40 BEEP:NEXT

50 PRINT

60 *

400 AS="NEW"4+CHRS(13)+"KILL"+CHRS (34)+"NAME.BA"+CHRS (13)+"MENU"+chr$(13)

401 FORI=1TOLEN(AS):POKE65449+2*T,ASC(MID$(AS$,I,1)):POKE65450+2*T, 0: NEXT
402 POKE65450,1

For those of you who want to know how it works, line 400 creates a string
which contains the commands that would be necessary to delete a program from
memory. Line 401 pokes the string into the keyboard buffer, which holds it
until the computer asks for input from the keyboard. Line 402 pokes the number
of characters in the buffer into the buffer counter.

When the program ends, the computer gives you the "Ok" prompt, then checks to
see if there are any characters waiting in the keyboard buffer. There will be,

-17 =

so the BASIC interpreter dumps the string into BASIC as a command line, just as

if it had been typed in from the keyboard. The commands kill the program, and
return to the menu.

Ta Dal
Note that the above addresses, where the string is poked, is the keyboard input

buffer for the Model 100 and 102. For the Tandy 200, 65449 in line 401 must be
changed to 64797; and 65450 in lines 401 and 402 must be changed to 64798.

- 18 -

CHAPTER 8

Looking at Pixels and MOD

This chapter shows a technique of testing whether a specific pixel on the
LCD screen is on or off, and explains use of the MOD statement.

Copyright 1985 Tony B. Anderson
All Rights Reserved

Several people have asked over the years, how to find out if a particular pixel
on the LCD screen is "on" or "off". Below is a short routine provided by Neil
Wick, as one technique that does it. '

Use the routine in lines 100-130, which will determine if the pixel at screen
location X,Y is set ("on") or preset ("off"). Program lines 10-60 are there to
set the pixel for the test, and have no relation to the actual operation of the
subroutine other than establishing the X and Y coordinates for the subroutine.

10 CLS

20 X=115:Y=20

30 PSET(X,Y)

40 GOSUB100

50 IFFLTHENBEEP

60 END

70 *

100 PRINT@40%*(Y\8)+X\6,CHRS(27)"P";
110 Y=Y:PRINTCHR$(27)"Q"

120 FL=PEEK(XMOD6-20)AND2" (YMODS8)
130 RETURN

This program will indicate that the pixel at 115,20 is on by beeping. To make

sure it doesn’t beep if the pixel is off, simply delete line 30 and run the
program again.

Note that testing FL in line 50 with an IF (true) statement, is the actual
test. If FL is greater than 0 then the pixel is on. If FL equals, or is less
than 0 then the pixel is off.

While the subroutine (lines 100-130) is shown in four lines, you can actually
put it all on one line in your program, if you like.
Pgm notes: Those backslashes in line 100 indicate integer division, and are

explained on page 107 of the M100 manual. It’s the same as INT(Y/8) and

- 19 -

INT(X/6). The backslash is created by holding down the graph key, and pressing
the hyphen key simultaneously.

"MOD" is an arithmetic operation, giving the leftover balance after a divide or
series of subtractions. For example, 12MOD4 = 0, 13MOD4 = 1, 14MOD4 = 2, etc.
10MOD6 = 4 (4 is the leftover after subtracting 6 from 10 as many times as

possible). Or it can be expressed as "6 goes into 10 with a balance of 4
leftover".

The neat thing about the MOD command, is that it also incorporates an automatic
"scaling" feature, so that numbers greater than the mod number are brought

down to size by repetitive subtraction. Thus, 13MOD6 = l. (6 is subtracted
from 13 as many times as possible, until there is only a "leftover").

Thanks to Neil Wick for the subroutine.

- 20 -

CHAPTER 9

Upper and Lower-case Conversion

This chapter discusses case conversion; the changing of characters from

upper to lower case, or from lower to upper case; and a new approach using
AND/OR logic.

Copyright 1985 Tony B. Anderson
All Rights Reserved

A number of programs have been written which require case conversion, i.e.
converting from upper to lower case, or from lower to upper case. In BASIC, it
has generally been done by examining the characters in the string, and changing
the value of the character on a character-by-character basis, as in the
following example:

10 AS = "The Quick Brown Fox"
20 FOR A = 1 TO LEN(AS)

30 B=ASC(MIDS(AS$,A,1))
40 IF B>95 AND B<123 THEN MID$(A$,A,l)= CHR$(B-32) :REM Lower to upper

or:

40 IF B>64 AND B<91 THEN MIDS$(A$,A,l)= CHR$(B+32) :REM Upper to Lower
50 NEXT

Well, it turns out there is an easier way to effect case conversion, using
AND/OR logic. 1If, for example, you want to input a character, and make sure
it’s in upper case, no matter what it was to start with, the following
statement (line 20) will do it:

10 AS=INPUTS(1)
20 AS=CHRS$(ASC(AS)AND223)
30 PRINT AS

To convert any input to lower case:

10 AS$=INPUTS(1)
20 A$=CHRS$(ASC(A$)OR32)
30 PRINT A$

This routine affects almost all characters above CHR$(63) - the "?" mark,
converting them into their "shifted" equivalent. And is quite useful for
Yes/No types of inputs. It also allows easier checking for this type of input,
requiring only a simple compare, rather than a series of comparisons. An
example:

- 2] =

10 PRINT" Was that correct? (Y/N) ";
20 AS$=INPUTS$(1)

30 AS=CHRS$(ASC(A$)AND223)

40 IFAS="Y"THEN ...

or:

40 IFINSTR("YN",A$)THEN 50 ELSE 20
50 +... (program continues)

The latter example checks to see if the response was "Y" or "N", and if not,
continues to wait for proper input before proceeding. Interestingly, the AND
logic will not affect characters that are already upper-case, and the OR logic
will not affect characters that are already lower-case.

Unfortunately this technique does little to solve the original problem, that of

converting an entire string of characters to upper case, or lower case. Using
the following form:

0 “ UPPER CASE
10 A$ = "The Quick Brown Fox"
20 FOR A = 1 TO LEN(AS)

30 IF ASC(MID$(AS$,A,1)) >64 THEN MID$(AS,A,1)= CHR$(ASC(MIDS$(AS,A,1)) AND 223)
40 NEXT

0 ° LOWER CASE

10 AS = "THE QUICK BROWN FOX"

20 FOR A = 1 TO LEN(AS)

30 IF ASC(MID$(AS,A,1)) >64 THEN MID$(AS$,A,l)= CHRS(ASC(MIDS$(AS,A,1)) OR 32)
40 NEXT

+++the IF statement is just as cumbersome as the original coding was.

But in cases of character input, and case conversion, the new AND/OR logic may
prove useful, particularly where the form previously used was:

10 AS=INPUTS(1)
20 IF(ASC(A$)>96)AND(ASC(A$)<123)THENAS=CHRS$(ASC(AS)~-32)

Compare:

10 AS=INPUTS$(1)
20 A$=CHR$(ASC(A$)AND223)

A viable solution is to get your keyboard input character by character, convert
it and add it to a string, ending the input phase when a carriage return is
received; like this:

0 “ Converts string input to upper-case

10 PRINT" Input your string: ";

20 AS=INPUTS(1)

30 AS=CHR$ (ASC(AS$)AND223):BS=BS+AS

40 IFA$=CHRS$(13)THEN 50 ELSE 20

50 «... (program continues, string is in B$)

- 22 =

CHAPTER 10

Which Computer is the Program Running In?

This chapter describes an interesting technique that can be used by a
running program to determine whether it is running in a 100 or 200, and
can then make necessary adjustments, allowing a single program to run on
either the 100/102 or the 200, even when the program contains address
dependent peeks, pokes and calls.

Copyright 1985 Tony B. Anderson
All rights Reserved

An interesting technique was revealed in the software for the Tandy Disk Drive,
allowing a running program to determine whether it was running in a Model 100,
102 or Tandy 200. With the portable disk drive, it allowed the initialization
program to load the correct software in either machine.

The technique involves simply reading the ROM byte at address 0l Hex, or 1
decimal. This is easily done with the peek command in BASIC, in the following
form:

A=PEEK (1)

If the computer is a Tandy 200, A will = 171. If A is anything else, it’s a
100 or 102.

This can easily be used in an IF/THEN test as follows:
IF PEEK(1)=171 THEN (it‘s a T200)
0K, what’s it good for?

Well, it can be used in programs that use peeks, pokes, or calls, to have the
program automatically adjust to whichever computer it is running in...

IF PEEK(1)=171 THEN CALL17600 ELSE CALL21265

IF PEEK(1)<>171 THEN POKE 62958,128 ELSE POKE 64335,1
Obviously, you must know the necessary CALLS, PEEKS and POKES in both of the
computers in order to use this technique, and you’ll be able to find many of

the equivalent PEEKs, POKEs and CALL addresses later on in this book.

In any kind of terminal, or file transfer program, this technique could

- 23 =

illlIIIllllllIlIllllllllillllllllllllllllllllll

initialize whatever COM status was requireds In a RAM or System Manager
program, it could adjust to read the internal RAM directory.... In fact, it
could adjust to do anything that is considered machine dependent. It could be
used to create "paged" displays on the screen, adjusting for larger displays
on the 200°s screen, automatically if the program is running in a 200.

It’s the easiest way to make a single program usable in either the 100/102 or
200, by simply adjusting the program for the machine. An entire series of
variables can be set, depending on the machine, lke this:

IF PEEK(1)=171 THEN M=64554:N=640:R=15 ELSE M=62330:N=320:R=8

The variables can then be used in the program for various purposes, setting

number of screen lines (R), calculating screen display position (N), or looking
for a flag, or pointing to a buffer area in the reserved memory area (M).

- 24 =

CHAPTER 11

Using the MAXFILES Statement

This chapter discusses MAXFILES and associated errors caused by the wrong
MAXFILES setting. An elegant solution is suggested to prevent such errors.

Copyright 1986 Tony B. Anderson
All Rights Reserved

One area of personal programming that is often overlooked is the correct use

of the MAXFILES statement. It is common, for example, for a programmer to set
MAXFILES to 0, in order to free up as much RAM as possible, in which a certain
program might run. The problem arises if the programmer forgets to reset
MAXFILES to some value other than zero when the program ends and/or returns

to the Main Menu. When another user, particularly a non-programming user, runs
another program that attempts to open a file, or files, if MAXFILES=0 then

he encounters a BN error (Bad File Number). '"BN" almost always indicates an
incorrect maxfiles setting.

On the other extreme, programmers who may use several files, may set MAXFILES
to a value greater than zero in order to accomodate the needs of their program,
and then forget to reset it to the normal default of 1, before exiting the

program. This robs the end user of some of his RAM space, by reserving file
buffers which will not be needed.

The most common solution to this problem is for any programmer to specify how
many files he will be using at the beginning of his program, by using the

MAXFILES=(whatever) statement, and then always resetting MAXFILES to the
default value 1, when normally exiting the program, MAXFILES=1:END.

An even more elegant solution, is to have the program read the value of
MAXFILES, poke it into a safe place in RAM, then set MAXFILES to whatever is
needed by the program. On exiting the program, peeking back the value that
was stored, and using it to reset MAXFILES to the previous condition.

There are a number of areas in reserved RAM that can be used as the temporary
storage place, including any of the unused bytes in the function key definition
table, where you know there will be no conflicts with anything else you may
have put there. The advantage of using the unused function key definition

space, is that those addresses are well documented for both the Model 100 and
Tandy 200.

As an example, 15 bytes are allowed for each function key definition. Fl in
BASIC is the command "Files". 1In the definition string, it is "Files"+
CHR$(13), for a total of 6 bytes, leaving 9 bytes unused. Since the actual

- 25 =

addresses allocated for this definition lie between 63369 and 63384 (61684 to
61699 in the T200), it appears that temporary storage of the MAXFILES value
could be made at address 63383 (61698 on the T200) with no difficulty.

The MAXFILES command erases any variables previously set, so simply storing
the value of MAXFILES in the form:

100 X=MAXFILES:MAXFILES=3

would not work... but the following method does work:

100 X=MAXFILES : POKE 63383,X : MAXFILES=3

« «+s program

900 X=PEEK(63383) : MAXFILES=X : MENU

(Of course the peek and poke addresses would be 61698 on the Tandy 200.)

It is even possible to shorten the commands, since there is no syntax
problem, as in:

100 POKE 63383,MAXFILES : MAXFILES=3

900 MAXFILES=PEEK(63383) : MENU

If you have changed the definition of function key Fl in BASIC this particular
address might not be available to you. Suggest you peek the address in direct
mode to see what’s there first. If it‘’s zero, then you can probably use the
above forms with no problem. These unused bytes are available for your use,
and as long as the key definitions are not changed, will present no problems.

If that particular address is not a zero, then simply add 15 to the address
number and try again... You’d then be in the definition area for F2. Another
15 would put you in the F3 definition area, etc...

Another couple of interesting features of the MAXFILES statement:

l. To maximize RAM space in a program which does not access any files, you
can set MAXFILES=0 to gain an additional 256 bytes of RAM space in which your
program can rune. :

2. You can change MAXFILES in a running program, but doing so will usually
clear all existing variables, and may clear the program stack. It should be
used carefully, or should be fully tested prior to this type of use.

3. The machine defaults to a value of MAXFILES=1 when new, or after a cold=-
start. You can set any number of buffers you need at the beginning of your
program, and reset the value to 1 as the final statement in your program, just
before the END or MENU statement, resetting it to the normal default value.

4. When setting MAXFILES at the beginning of the program, it should appear

- 26 =

1.
2.
3.
4e
5

before anything else, as it sets aside buffer space, and in the process, clears
anything else you may have set.

10 CLEAR 1500: DEFINTA-E: DIM A$(22): MAXFILES=2

«++. would leave you only with the MAXFILES setting, all the rest being over-
written when setting the buffer spaces. Proper construction would be:

10 MAXFILES=2: CLEAR 1500: DEFINT A-E: DIM AS$(22): A=3

This logic does the following:

Set two 256 byte buffers for file I/0.

Clear 1500 bytes for variable storage

Define variables A through E as integers

Dimension for 22 string slots in an array called AS$

Sets the value of A, equal to 3. The rest of the integers, B-E are
automatically set to zero when defined.

O T

CHAPTER 12

REM vs. the ° Mark

This quickie describes the difference between tokenized "REM" and "*"
remark lines in BASIC programming.

Copyright 1987 Tony B. Anderson
All Rights Reserved

In the process of byte-fighting programs, it is prefereable to use the reserved
word ‘REM’ in any remark lines, rather than using the apostrophe mark, the
single left quote, "“". (Which, unfortunately, looks a lot neater!)

When "REM" is tokenized, it is saved as a single byte, with a value of 142.

However when the apostrophe is tokenized it is stored as three bytes, in the
sequence 58,142,255,

If your program, as many do, contains a lot of instructions or documentation at
the head of the program in REM lines, use of ‘REM’ instead of the apostrophe
will save two bytes per line or occurrence. In a large program, with many REM
statements, it may be significant.

- 28 =

CHAPTER 13

The Random Number Generator

Results of testing the random number generator in the Model 100 for
repeating cycles of numbers; an observation or two comparing results
between the Model 100 and Tandy 200, and how to generate numbers within
a specific range.

Copyright 1987 Tony B. Anderson
All Rights Reserved

The random number generator in the Model 100 seems to be better than most
folks have been led to believe, me included. Some comments by others that it

would "recylce" itself, and start repeating the same series of random numbers
after about 64,000 numbers, got me curious... So I set up the following
short program to see whether that was true.

10 CLS:PRINT"Random Generator Test"

20 PRINT"Start Time: "TIMES

30 A=RND(1) :PRINT"First Number ="A

40 C=1:PRINT"Count ="

50 B=RND(1):C=C+1:PRINT@128,C

60 IFB=ATHENPRINT:PRINT''"Match at "TIMES
70 GOTO50

Well, the program ran for 41 hours, generating about 22 numbers per second,
racking up a total of 3,259,022 random numbers, without ever matching the first
number! I only stopped the program since I needed the computer for other
purposes, and couldn’t allow it to continue.

Interestingly, the random number generator returns a fourteen-digit number
between .00000000000001 and .99999999999999.

But on the basis of that test, I°d say the random number generator is capable
of much more than we previously thought. It may be that some particular
combination of "adjusting" the generator output to get integers or "real"
numbers within a certain range, might show a repeating series after a certain
number of operations, but it was not possible for me to test this theory,
since it would depend on a specific-case instance, and only be duplicatable by
the exact same code.

It was also interesting that both the Model 100 and Tandy 200 generated the
same series of numbers, based on a short comparison using the following

one=line direct command:

FOR A = 1 TO 5:PRINT RND(1):NEXT

- 29 -

From this, it would appear that both machines use the exact same code to
generate numbers, and start with the same seed. But the Tandy 200 runs a
mite slower, as demonstrated with the following one-liner:

FOR A = 1 TO 2000:NEXT:BEEP

This routine, started simultaneously on both machines (and at the same time,
too!), finished on the Model 100 first.

Generating random numbers with the statement RND(1l) will use the previously
generated number as the "seed" to start the process of generating the next
number. Using RND(0) or RND(-1) will generate the same number, over and over.
Using RND(l) in a program without reseeding the generator, will always generate
the same series of numbers each time the program is run.

You can "reseed" the random number generator yourself at the beginning of the
program by asking for the user to choose a number between 1 and 100, or by
using the seconds digits from the clock, or by reading one of the two running
counters in high memory, then poking the value into the memory seed location
at 64634 (100 and 102) or 63277 (200). The running counters are located at
63791 in the 100/102 and 61983 in the 200. The recommended form would be:

For the 100/102:
POKE 64634,PEEK(63791)

For the 200:
POKE 63277,PEEK(61983)

Another interesting feature is that if the number in parentheses in the RND
statement is negative, as in RND(=45), the value 45 will be used to reseed the
number generator. But subsequent use of the generator should be with the
RND(1) form, or the same number will be generated over and over. The best way
to use this would be to do some number manipulation using the date, time or
running counter, then make it a negative value, and use it in the RND statement
as a variable, as in RND(=X).

To use the random number generator to generate a specific series of numbers,
like numbers between 1 and 12, multiply your top number by the RND(1l) value,
then add 1 to the result. This will yield a value between 1 and your desired
top number. Example, to get random numbers from 1 to 12, do the following:

100 X=12
110 Y=INT((RND(1)*X)+1)
120 PRINT Y

To generate a series of random numbers, simply put it in a loop that gives you
the desired number of numbers.

If you want a series of numbers between two numbers, like between 7 and 15, set
X to the difference between the lowest and highest values, plus 1 (15=7+1 = 9),

and instead of adding 1 in line 110, add 7 (the lowest wvalue desired), as in:

- 130 -

100 X=9
110 Y=INT((RND(1)*X)+7)
120 PRINT Y

An interesting test for an ideal distribution of numbers (to see that you’re
getting a reasonably accurate equal distribution, i.e. different numbers, about
the same number of times in any sequence) is the following program. It will
generate 10,000 random numbers, and count how many times each number appeared,
then provide a report of the distribution. Ideally, every number will appear
approximately the same number of times, plus or minus some small percentage.
Press any key after you“ve looked at the results to get back to the menu.

10 CLS:PRINT@42,"Working..."
20 DIMZ(12):X=12

30 FOR A=1 TO 10000

40 Y=INT((RND(1)*X)+1)

50 Z(Y)=Z(Y)+1

60 NEXT

70 CLS:PRINT" Distribution:"
80 FORA=1TO6

90 PRINTA;Z(A);TAB(20);A+6;Z(A+6)
100 NEXT

110 AS=INPUTS(1):MENU

=i

CHAPTER 14

The Bottom Line

This chapter shows how individual words on the bottom line of the screen
can be shown in normal or reversed video, not requiring symbols or graphics
characters be used to indicate function key functions. A potential
programming change for Xmodem-type programs, TELCOM emulators, and to
indicate function key operations.

Copyright 1988 Tony B. Anderson

There a number of programs, notably the Xmodem programs, and TELCOM emulators,

where the authors have used words on the bottom line of the screen to simulate

the function key label lines normally used in the various program modes in the

computer. In cases such as in the Xmodem programs, a prepared line is written

to line 8 on the screen (or line 16 on the Tandy 200), and then locked in place
with a CALL which disables scrolling of the last line.

In most cases, the author of the program rewrites the bottom line on the screen
with different symbols when it is necessary to indicate that different program
operations, such as downloading or uploading are taking place. In some cases,
the authors have simply replaced the word "Down" or "Up" with a group of @°’s,

cross-hatches, or graphics characters; none of which really duplicate the
normal reverse video display of those words in TELCOM.

The following short program illustrates a better technique of doing that, which
maintains the original look of the TELCOM program, writing the word in reverse
video. It’s not a direct substitution of statements that are in any of the
various programs, but an illustration of the technique that could have been
used, and which might be used by individulas wanting to make changes in their
own displays. The program runs in BASIC to simulate Xmodem TELCOM emulators,

and can be adapted for use in any programs with a label line on the bottom of
the screen.

10 CLS

20 PRINT@280,"Prev Down Up Stop Echo Free File Menu";
30 PRINT@42,"Normal ";:QS$=INPUTS(1)

40 CALL17001:PRINT@285,"Down";:CALL17006

50 PRINT@42,"Reversed ";:Q$=INPUTS$(1)

60 PRINT@285,"Down";

70 PRINT@42,"Normal ";:QS$=INPUTS(1)

Line 20 simply writes a TELCOM simulation on line 8 (of a Model 100/102)... the
words could be changed to whatever are needed by the program. After the bottom

- 32 =

line is written on the screen, "Normal' shows up on the second line of the
screen to show you that you are at the normal display. Pressing any key will
throw "Down" on the bottom line into reverse video, and give you a "Reversed"
indicator on the second line. Pressing any key will again reverse the process,
turning off the reversed "Down'", returning it to the normal display, and
indicating "Normal" on the second line again.

The CALL‘s in the above example make this version specific to the Model 100 or
102, but similar CALL’s exist for the Tandy 200, and are documented. And even
changing line 40 so that it uses the ESCape technique works:

40 PRINT@285,CHRS$(27)"pDown'"CHRS(27)"q";

In the 100/102, CALL 17001 turns on reverse video, CALL 17006 turns it off.

In the Tandy 200, CALL 20360 turns on reverse video, CALL 20365 turns it off.
This is overly simple, not showing the CALLs necessary to lock and unlock the
screen display... but just showing that the words on the bottom line can be
reversed, not requiring the use of special symbols or graphic characters to

indicate functions. Question is, why didn“t the various authors use this
technique instead of graphics symbols?

In any case, once you have written a label on the bottom line of the screen,
you can lock it there by protecting it from screen scroll, with a simple CALL
to the ROM routine which disables screen scrolling.

For the 100/102, CALL 16959 locks the bottom line, CALL 16964 releases it.

For the Tandy 200, CALL 20318 locks the bottom line, CALL 20323 releases it.

SN

CHAPTER 15

Elegant Programming Tips

Some ideas, methods and tips to improve your BASIC programming to conserve
memory and increase execution speed of all such programs.

Speed & Conservation of Memory

Every KEYWORD, quoted literal, punctutation mark, and character, occupies at
least one byte in memory. Every line number uses two bytes for the number,
another two bytes for a pointer to the next line location, and a "Null" byte
which terminates the line. Each space takes a byte. Variables use a two=byte
pointer to the area in memory that the variable is stored in. In addition, each
type of variable uses different amounts of storage space. Integers require two
bytes, reals require four bytes and double precision values require eight
bytes. Strings use one byte for each character and are allocated dynamically,
which means they can change size based on the number of characters assigned to
them. This is all background for the following space & time saving tips:

1: All variables should be "typed" at the beginning of each program. That is,
you should specify each variable”s "type" at the beginning of the program.
Use DEFINT, DEFSNG, etc. Even string variables should be typed with the
DEFSTR statement, because the "$" used with each such variable in the body

of the program takes a byte of storage. Eliminating the $ signs, can save
a significant number of bytes!

2: Use integers wherever possible, especially in counting loops. The time
savings is dramatic, and can be personally tested with simple programming
loops. Integers are 2 1/2 times faster than the default double-precision
variables. Reals are only 25% faster than double-precision.

3: Eliminate the variable argument on the NEXT portion of FOR/NEXT loops.
Here is a real kicker - besides the saving of one byte of storage for each
such occurence, integers are 60%7 slower, reals are 507 slower, and double=-
precision is 807 slower when you specify the variable than when you simply
specify NEXT.

4: Eliminate final quote marks on all literals that appeaf at the end of a
line. A byte is saved for each quote mark eliminated.

5: Another surprise that violates previous Microsoft BASIC conventions is that
semicolons are NOT routinely needed as variable punctuation. They only
seem to be required after PRINT USING or if you want to keep the cursor
from advancing to a new line or in an INPUT statement. All other uses are
gratuitous and can be left out to save one byte per occurence.

6: Use as many multiple statements per line as you can, since for each line

- 34 -

11:

12:

13:

14:

15:

number eliminated, you have a net savings of four bytes (the five needed
for each separate line, less the one byte used for each colon.) You are
allowed to use BASIC lines up to 255 characters in length. Entire routines
can often be written in a single line.

¢ Eliminate ALL spaces. Your archive copy may have them for intelligibility,

but your running copy will save one byte for each space that is removed.
Byte-fighting and compacting programs always remove all spaces and REMarks
from the program.

: Use REM in REMark lines instead of the apostrophe, it will save two bytes

for each occurrence.

Remove all REMark lines from running copies of your programs to save space.
Never use program branches (GOTO, GOSUB or whatever) to a REMark line. If
the REMark line is removed, your program has nowhere to branch to.

Put all initialization code at the end of your program and use a GOTO
or a GOSUB to get to it. Little used routines at the end make dramatic

improvment in speed since MSBasic must search from the beginning of the
file for each line referenced.

Put all time critical code and subroutines at the beginning of the program
instead of the end, for the same reasons as 10 above. Use a GOTO to jump
over them to the main body of the program.

Initialize all variables before you start the main body of code. This
creates a stable, linear table of variables that are accessed more rapidly.

DO NOT use the supposed short-—cut of raising a number to the .5 power to
save some time over the SQR routine. Inaccuracies in the 11lth and 12th

decimal place will tend to introduce errors in later calculations which
might use this resulte.

Assign literals that are used more than once in a program to a variable.
Do this in your initialization code. Almost one byte per character is
saved for each such duplication eliminated. Use GOSUBS to get to often
repeated prompts or screen displays.

Use SPACES$(X) to assign X number of spaces rather than STRINGS$(X,32) or
a literal string of spaces.

One of the serious deficiencies of the built-in Basic interpreter is the lack
of user-defined functions, but almost any function can be written as a standard
subroutine, and called as a GOSUB. There are many good sourcebooks which
contain libraries of such subroutines which can be extracted and rewritten for
use in the Tandy portables. For assembly language programmers, many standard
8080 routines will work in the Model 100/102 and Tandy 200, requiring only
machine-specific changes.

Thanks to Richard Horowitz for many of these programming suggestions.

- 35 -

CHAPTER 16

Control and Escape Codes

This chapter discusses use of control and escape codes for controlling LCD
functions, moving the cursor around the screen, erasing lines and portions
of the screen.

Copyright 1985 Tony B. Anderson
All Rights Reserved

Use of the control keys in the Model 100/102 and 200:

In TEXT or EDIT modes:
CTRL=A jumps to the beginning of the last word, same as Shift-Left Arrow

CTRL-B moves the cursor to the bottom of the file, same as Shift-Down Arrow

CTRL-C No action

CTRL-D Moves cursor one space right, same as Left Arrow
CTRL-E Moves cursor up one line, same as Up Arrow
CTRL-F No action

CTRL-G "Save to:" prompt, same as pressing F3

CTRL-H Destructive backspace

CTRL-I Same as Tab key

CTRL-J No action

CTRL=-K No action

CTRL-L Same as F7 = Define (Select) for cut and paste

CTRL=-M Same as Carriage Return (ENTER)

CTRL-N Same as Fl, "String:" prompt

CTRL-0 Same as F5, "Copy defined characters into paste buffer, do not delete"

CTRL-P Allows input of control characters as literal characters in text files.
The CTRL=P is followed by the CTRL character to be embedded.

- 36 -

CTRL-Q
CTRL-R
CTRL-S
CTRL-T
CTRL-U
CTRL-V
CTRL-W
CTRL-X

CTRL-Z

CTRL-H
CTRL-I
CTRL-M
CTRL-U
CTRL=-X
In the
CTRL=-J

CTRL-K

Common functions of control characters embedded in text files with a CTRL=P:

CTRL-G Beep (Bell)

CTRL-H Backspace for overstrike
CTRL-I Tab

CTRL=J Line Feed

CTRL-L Form Feed

CTRL-M Carriage Return (same as ENTER)

In BASIC:
Some of these can be used in programs, in the form: PRINT CHR$(27)"J"

From the keyboard:

Moves cursor to beginning of line, same as Control-Left Arrow

Moves cursor to end of line, same as Control-Right Arrow

Moves cursor one space to left, same as pressing Left Arrow

Moves cursor to top of screen, in same column, same as Shift-Up Arrow
Deletes defined characters, same as pressing F6 after using F7 (CTRL-L)
"Load from:" prompt, same as pressing F2

Moves to top of file, same as Control-Up Arrow

Moves cursor down one line, same as Down Arrow

Moves cursor to bottom of file, same as Control-Down Arrow

Destructive backspace

Tab
Carriage Return (ENTER)
When typing BASIC statements, erases the current line
Same as CTRL-U
program:
Erases all data from the cursor position to the bottom of the screen

Erases data from the cursor position to the end of the line

- 37 -

CTRL-p
CTRL-q
CTRL-P
CTRL-Q
CTRL-T
CTRL-U
CTRL-W

CTRL-Y

Turns

Turns

Turns

Turns

Turns

Turns

on reverse video (note: "p" is in lower case)
off’ reverse video (note: "q" is in lower case)
on the cursor

off the cursor

off screen scrolling (bottom line lock)

on screen scrolling (bottom line unlock)

Releases locked screen display

Locks

screen display

- 38 -

CHAPTER 17

Looking into the RAM Directory

This chapter looks into the RAM directory, describes it’s structure and
use, and provides two programs to conveniently list the RAM files and
their true locations in RAM.

Copyright 1989 Tony B. Anderson
All Rights Reserved

The Model 100 and 102 have 27 "slots" for filenames in the RAM directory in a
reserved area of high RAM. There are 55 such "slots" in the Tandy 200. This
directory contains the names of the programs and files in RAM that is listed
on the computer’s main menu when you turn it on. The menu in the 100/102
actually only shows you 24 of the filenames, and on the 200, only 52 filenames
are shown. Three of the directory file slots are effectively "invisible" in
all three machines. More about that, later.

Along with the names of the programs and files in ROM and RAM, the directory
contains an attribute byte which tells the system what type of file it is, and
two bytes which indicate the starting location of the file or program. Each
directory entry uses eleven bytes; the attribute byte, two bytes for the start
or entry address, and eight bytes for the actual name. The eight byte name
field contains the name and file extension, without the period, using REPORTDO
for the file REPORT.DO, or SORTERBA for SORTER.BA. The built=-in ROM programs
have no filename extension, so the last two characters of those entries are
blank characters. Any name which is less than six characters long, or eight,
including the filename extension, is padded with blanks to justify both ends of
the entry. PADS.DO, for example, would be stored as "PADS DO". When you go
into a file with the TEXT program, and are prompted for the name of the file to
edit, you could enter it as PADS.DO or PADS .DO and get to the same file. The
period is a kind of delimiter, and tells the computer where the end of the
filename is, and is jogged over to match the actual name length, as it is in
the directory.

This presents an interesting programming possibility. Suppose you have some
sort of file which is updated on a regular basis by a frequently=-run program.
The program can look through the directory, find the filename, and poke ascii
characters into the filename slot to produce a new filename in the directory.
Example: suppose you bill customers on an hourly basis, and start each day with
a new file called BILL.DO. Each time you perform work for a customer, you run
a small BASIC program that adds your billable time to the file, and updates the
filename by adding numbers to the name in the directory. You might work for
seventeen customers that day, and at the end of the day the file would be

named BILL17.DO. Or, on a list of things to do, STUF.DO, your program could
poke the date the file was last updated into the filename, so you might have a
file called STUF21.DO, indicating the file was last updated on the 2lst.

- 39 -

In the 100/102, the directory starts at 63842, and extends to 64139 in eleven-
byte steps; in the 200, it starts at 62034, and extends to 62639. Since each
"slot", is eleven bytes long, it“s a simple matter to step through the entire
directory with a program look and look at each name, looking for a matching
filename. Here’s one example of how it can be done in the 100/102:

100 FOR A=63842 TO 64139 STEP 11
110 AS="":FOR B=A+3 TO A+8
120 A$=AS+CHRS(PEEK(B))

130 NEXT
140 I[F A$=""BUDGET" THEN 200
150 NEXT

160 PRINT"File not found'":STOP
200 (File exists, continue with program)

If you wanted to poke update characters into the filename, the program might be
as follows, assuming you wanted to add "O0l1" to the filename:

100 FOR A=63842 TO 64139 STEP 11

110 A$="":FOR B=A+3 TO A+6
120 AS=A$+CHRS(PEEK(B))

130 NEXT
140 IF A$="BDGT" THEN 200
150 NEXT

160 PRINT"File not found":STOP
200 POKE A+7,ASC("0"):POKE A+8,ASC("1™)

0f course you could use variables, too, as in:

200 Fs="01"
210 POKE A+7,ASC(F$):F$=MID$(F$,2):POKE A+8,ASC(F$)

Now, about those three extra filename slots. There are three floating file
buffers in RAM, which you frequently use, but never actually see; the unnamed
BASIC program buffer, the paste buffer, and BASIC’s editing buffer. The unnamed
program buffer is where a program is stored when you type it into BASIC, before
you save it with a program name. It is, simply, an unnamed program.

In the Model 100, these three buffers had actual names, and an inspection of
the directory would reveal them as "Suzuki", "Hayashi", and "Ricki". There is
a story going around that Suzuki and Hayashi are the names of two of the
Japanese engineers who worked on the original project, and Ricki is the name of

one of the project engineers at MicroSoft. Needing names for the buffers, they
used their own names as a sort of inside joke. This story hasn’t been firmly

verified, but it makes a nice story, anyway. These names were replaced in the
200 with a series of unintelligable characters, since there was no real need to
have an actual file name for the buffers. —— You won’t see Ricki very often in
the directory. It’s there in a new machine, or after a cold start; but when
you invoke the EDIT command in BASIC, part of the program’s assigned name, if
one exists, is written into the directory slot, and overwrites "Ricki". So
he’s hard to find.

The "attribute byte", the first byte in the eleven character slot, tells the
system what kind of file it is, and whether it is visible or invisible. 1It’s a

- 40 -

IIlllllllllllllllllllllllllll‘

single-byte number with the following meanings:

0 A blank (empty) filename slot, or an empty BASIC edit buffer
128 A BASIC program
136 The unnamed program buffer, or an invisible BASIC program
160 A .CO file (assembly language program)
168 An invisible .CO file
176 A ROM program
184 An invisible ROM program name
192 A .DO file
200 The paste buffer, or an invisible .DO file
240 In the Tandy 200 only, 240 is the attribute byte for MSPLAN, which
is actually an alternate ROM program
248 MSPLAN’s attribute byte when the name is made invisible

With the above information, you’ve probably just learned that you can make
files and programs "invisible" on your main menu. More on that, later.

The file location is stored in hexdecimal notation in the second and third
bytes in the directory slot, in the assembly language convention of the lowest
part of the address first, followed by the highest part of the address. Unless
you are an assembly language programmer, this information is not of much use.
But it does tell where, in RAM, each file starts, and by sorting the addresses,
and subtracting each from the next highest, you can determine how long a file
might actually be. - Seldom needed information, but it is possible.

Interstingly, each time you do something to a file in RAM, like editing it,
adding or deleting characters, the other files get moved around to accomodate
your changes, and all of the directory pointers are updated to reflect the new
location addresses. 1It’s generally done so fast you aren’t aware of it.

Following are two RAM directory programs, one for the 100/102 and one for the
200, which will give you all the information you’ll probably ever need directly
from the RAM directory.

“ RAMDIR.100
Copyright 1985 Tony B. Anderson All Rights Reserved
This program prints the internal RAM directory for the Model 100, listing

the entry address, the type and status byte, the starting address of the

* file in RAM, and the file name. Buffers are indicated. Output is ‘paged”’
for the M100 screen.

NP WN=O
“

[
o

CLS:L==1

PRINT@316,"(c)";:PRINT@48,"™Model 100 RAM Directory':PRINT

PRINT" Displays entry location, type and Status byte, Location in RAM
where file starts, and name."

70 FORA=63842T064129STEP11:L=L+1

72 IFL/6=INT(L/6)THENPRINT@280,"Press ENTER to continue "3 :AS=INPUTS(1):CLS
80 PRINTUSING"###### ";A;

w N
oo

- 4] -

—

90 PRINTUSING"#### ";PEEK(A):

100 PRINTUSING"###### '";PEEK(A+1)+256*PEEK(A+2); :PRINTTAB(20)
130 FORB=3TO10

140 PRINTCHRS$(PEEK(A+B));

150 NEXT

155 TFA=63897THEN PRINT" (Unnamed Pgm)";

160 IFA=63908THEN PRINT" (Paste Buf)";

165 IFA=63919THEN PRINT" (Edit Buf)" ELSEPRINT

170 NEXT

 RAMDIR.200
Copyright 1985 Tony B. Anderson All Rights Reserved
This program is Model 200 specific!

Program prints list of internal RAM directory, giving directory addresses,
Type and Status Flag, Starting address in RAM, and file name.

o~N OB WNEFE O
S

10 CLS:L=7
20 PRINT"ADRSS
30 PRINT'"T&S

The Directory Entry Address"

Type & Status (See manual)"

40 PRINT"LOC File Location in RAM"

50 PRINT'NAME Directory Name'":PRINT

60 PRINT" ADRSS T&S LOC NAME'" :PRINT

70 FORA=62034T062628STEP11:L=L+1

75 IFL/14=INT(L/14)THENPRINT@600,"Press ENTER to continue ";:A$=INPUTS$(1):CLS
80 PRINTUSING"###### ;A3

90 PRINTUSING'"{#### "3;PEEK(A) ;:IFFTHENIFPEEK (A)=0THENPRINT:GOT0160
100 PRINTUSING"#i#### '"3;PEEK(A+1)+256*PEEK (A+2);:PRINTTAB(20)3
110 TFA=62100THENPRINT'"'NONAMEBA" :GOT0150

120 IFA=62111THENPRINT"PASTEBUF":G0OT0150

125 IFA=62122THENPRINT"EDIT BUF":F=1:GOT0150

130 FORB=3TO1l0

140 PRINTCHRS (PEEK(A+B));

150 NEXT:PRINT

160 NEXT

Now, on making file and program names invisible... A close inspection of the
above list of attribute bytes will show that the difference between a file“s
name being visible or invisible, is a difference of eight in the number. So
all you have to do to make a name invisible, is to run the RAMDIR program in
your machine, determine where the attribute byte is located (the address in the
first column), and poke a new number into that byte that is 8 higher than the
"yisible" number. To make the name visible again, just poke a new number into
that byte that is 8 lower than the "invisible" value.

Example: To make a file invisible, perhaps a file containing important data
that you don’t want anybody else to see, run RAMDIR, find out the address to
poke the new value, add 8 to the number in the second column, and poke the new
number in, using the direct BASIC command:

POKE A,B

- 42 -

+++.where A is the address in the first column, and B is the value in the second
column, plus 8.

To make the file visibile again, poke A, with B, minus 8.

Or to make it even easier, once you know the address to poke, use one of the
following forms:

POKE A,PEEK(A)+8 or POKE A,PEEK(A)-8

Further example: Suppose you never use the built-in programs ADDRSS and SCHEDL,
and would like to remove those names from your menu, just to clear it up a
little. Running RAMDIR, you would find that the ADDRSS file slot is at 63875
(in the 100/102), and SCHEDL’s file slot is at 63886. Both are of type 176,

a ROM-based program. Go into BASIC and type:

POKE 63875,184:POKE63886,184

+++ and press the ENTER key. When you go back to the main menu, you’ll f£ind
that both ADDRSS and SCHEDL are no longer on the menu.

It’s important to note that while this proceedure removes the name from the
menu, it doesn’t give you any more file slots to store additional programs in.
The file name is still in the directory, you’ve just adjusted the attribute
byte so that the ROM routine that lists the directory to the menu will not see
those files, and will not 1ist them. The only way you can see them now, is to
run the RAMDIR program, or some similar program that accesses the data directly
from the RAM directory.

If you want to bring either of the program names back to the menu, all you have
to do is poke 176 back into the attribute byte, the same way you poked 184
into the byte to render the names invisible.

You can make any filename visible or invisible. However, it is not recommended
that you make BASIC invisible, even if you seldom use it. It may make it hard
to enter BASIC, to reenter commands, or run programs, and the only way you can
regain control, in case of a system lockup, would be to do a cold=-start, with
the resulting loss of files. But anything else is fair game if you have a need
to hide the file, or just don’t use one of the ROM programs.

- 43 =

CHAPTER 18

Disabling BREAK, ~C, and Function Keys

This chapter discusses a poke which will disable the Break key and the
Control-C key, so that a running program cannot be aborted in that manner,
work=arounds, and rudimentary password protection programs.

Copyright 1984 Tony Anderson
All Rights Reserved

It is often useful to disable the Break Key and Control=C to prevent someone
from stopping the run of a program. In the Tandy portables, the Break Key is
functionally the same as Control-C, sometimes called the "Panic Button" to stop
a program running.

The Break Key in the Model 100/102 can be disabled, either in command mode, or
in a running program with the command POKE 63056, 128.

To re-enable the Break Key, use the command POKE 63056,0.

In the Tandy 200, the address is 61234. Use POKE 61234,128 to disable Break,
and POKE 61234,0 to re—enable it.

Actually, this poke disables program interrupts, and disabling the Break Key
also disables the Control=C interrupt, and Function Key interrupts. However,
if Control=C or a Function Key is pressed while the Break key is disabled, it
will be stored in the keyboard buffer, and acted upon when the Break Key is
re-enabled, or the program ends normally. This can be demonstrated with the
following short program: (for the 100/102)

10 POKE 63056,128 : REM Disables Break
20 FOR A= 1 TO 200

30 PRINT A;

40 NEXT

50 POKE 63056,0 : REM Enables Break

This program will print the numbers 1 to 200 on the screen. While the numbers
are printing, you cannot stop the program by pressing either Break or CTRL-C.
However, if you press either, when the program has finished running, the

BASIC interpreter will print "OK" on the screen, and on the next line, "7C",
which is the Control=C. If you press function key Fl during the program run,
after the OK, you will get a list of the FILES, which is the default function
of the Fl button.

Generally, you can disable the Break Key at any point in a running program, but
once it is disabled, you should not re-enable it until the end of the program.

- 44 =

Otherwise, there is the possibility that the program could still be interrupted
at the point where the Break Key is re-enabled.

Recommended: If you disable the Break Key, always be sure to re-—enable it at
the end of the program. Otherwise, it might not be there when you need it.

Lenny Leedy, a CompuServe subscriber, pointed out a potential problem for this
method of disabling the Break Key... If your program has any Input statements,
a Control-C for the input will abort the program. This is probably because the
BASIC Interpreter has forced an interrupt for the input of data, and a Control-
C break can sneak in during the input mode.

There is a way around this problem, which seems cumbersome, but if you want
the benefits of disabling the Break Key, you have to put up with the problems,
too. Lenny was trying to disable the Break Key during input of a password,
and his original program approach was as follows:

10 POKE 63056,128

20 CLS:INPUT"Enter Password";P$

30 IF P$="SECRETWORD" THEN CLS:POKE 63056,0:END
40 PRINT"ACCESS DENIED"

50 FOR A = 1 TO 1000:NEXT:” (time delay)
60 GOTO 10

The answer to this type of problem is to get input character by character, and
construct the password by adding the characters. This approach works:

10 CLS

20 T$="":P$=""

30 PRINT"Enter password:";

40 T$ = INKEY$:IF T$="" THEN 40

50 IF T$=CHR$(13) THEN 70

60 P$=P$+TS$:GOTO 40

70 IF P$="SECRET WORD" THEN CLS:PRINT"VERIFIED":POKE 63056,0:END
80 CLS:PRINT"ACCESS DENIED":GOTO 20

The character-by-character input effectively traps Control-C or Break Key
presses. If you don”t type SECRET WORD exactly, the only way to get out of the
routine is by pressing the reset button.

After "ACCESS DENIED" you could do other things...such as POWEROFF, or changing
the power on-time to virtually nothing; POWER1:POWEROFF. Then if the computer
is turned off, and back on, hoping to gain control, it will shut itself off
almost instantly. The only recourse then, will be a cold-start.

- 45 =

CHAPTER 19

Getting Into Assembly Language

Interested in learning more about assembly language, as it applies in the
Tandy portables? 1 was there, myself, and here are some insights on which
way to go, and how to get there.

Copyright 1987 Tony B. Anderson
All Rights Reserved

This chapter describes some of the insights and techniques I°ve developed to
learn more about assembly language programming for the Model 100 family of
computers. It includes three programs which provide disassembled listings of
decimal or hex data statements in BASIC loader programs or HEX files which are
used to create machine language programs.

In an attempt to teach myself assembly language programming for the Model 100

family of computers, with a little help and guidance from others, I°ve found
the following books useful:

"Z=-80 and 8080 Assembly Language Programming'" by Kathe Spracklen, published by
Hayden Book Company; ISBN 0-8104=5167-=0

""8080A-8085 Assembly Language Programming' by Lance A. Leventhal, published
by Osborne/McGraw-Hill.

"8080/8085 Assembly Language Subroutines" by Lance A. Leventhal and Winthrop
Saville, published by Osborne/McGraw-Hill.

"Hidden Powers of the TRS-80 Model 100" by Christopher Morgan, published by
the Plume/Waite Group, ISBN 0-452-25578-3.

"Inside the Model 100" by Carl Oppedahl, published by Weber Systems, ISBN 0-
938862-31-6

And, of course, all the ROM and RAM maps I could find. In that respect, the
most complete single source was a complete map of the Model 100, developed by
Robert Covington, and which is available in library 8 of CompuServe’s Model 100
Forum. The files are named 100ROM.RCO through 100ROM.RC6 (seven files), and
100RAM.RDC, along with the various 100 to 200 conversion lists provided by
other forum members. Address conversion tables have been published in various
support magazines; the most complete was in the May 1986 issue of Portable 100
magazine. Followup articles in subsequent issues detailed many of the 200°s
addresses. Back issues, or copies of the articles are available from the
publisher.

- 46 =

=

In addition to "book larnin’", I’ve found it helps to have a real live person,

who already knows how, who can answer some questions for you. There’s no
substitute for specific answers to your
questions.

I“ve also found it useful to study "Source Code" listings whenever available,
and to disassemble various assembly language programs and routines, in order
to analyze what they do, and how they do it. There are many such source code
listings in the Model 100 forum’s database, but not enough, I'm afraid. Many
assembly language programmers give you the program, but not the source code.
Too bad, so much can be learned from a well-documented source code list. It’s
one thing to read about the PUSHes and POPs, but quite another to see how they
are actually used in a program or routine, and why!

I°ve noticed that many assembly language programs, written for the Model 100
family, come to us as "Loaders" or HEX files. The actual machine language
program is effectively hidden in the form of DATA statements, or HEX code
listings. Such programs or listings are notoriousely lacking in documentation
about the machine language program or code they develop. Being naturally
curious (read "nosey"), and in order to find out more about how these programs
operate, I wanted to get a listing of the program in it’s assembled form.

This involves loading the program to the address where it will execute, then
breaking out of the program and doing a disassembly of the execution area.

That seemed like an approach that was overly complicated, since it involved
killing other stuff I had resident in my computer, such as the disk operating
system, text formatter, utility routines, etc... So I decided to try disass-
embling the original Loader’s DATA statements, or HEX code file, instead. But,
where to start???

Well, T developed the following technique, which works for me, giving me the
assembled listing, as if the assembly language program were actually loaded
and disassembled. The nice thing, is that it“s all done in BASIC, so it
doesn’t disturb any of those precious machine language programs that I°ve come
to rely on, and which, if removed or corrupted, involve intensive labor and
thought on my part, just to get them reloaded and operational again.

First, I would download a HEX file or Loader program from the database, which-
ever form the program was in; then, while I still had the file in ASCII form
(as downloaded), I°d delete all the program code except the data or HEX state-
ments. I would then add my own conversion routine to the remaining data
statements, either by loading the routine direct from disk, or using the "cut
and paste" technique from another RAM file. These "conversion" routines are
common enough, usually reading the data statements, and poking the numbers into
RAM. I wrote one myself, and adapted one from another program, modifying it

to do the conversion I needed.

The resulting new program is loaded into BASIC, and run. The output of the
program is a text file, consisting of the actual numbers (assembly language
opcodes) which the original program would have loaded into memory. Thus, I
have an ASCII text file of the machine language program, ready for reading by
a disassembler... but no such disassembler. Not one that would do exactly
what I wanted, anyway...

Well, Jim Irwin came to the rescue... I obtained a copy of his SMALL.100

- 47 =

disassembler and modified it to suit the purpose with Jim’s permission. 1 was
attracted to this particular disassembler because it supported both the Model
100 and 200, and used a "small" amount of RAM space to do the work. Other

disassemblers, which provide additional information, could also be adapted for
this purpose.

So, here’s the program that I use to create the data file from decimal DATA
statements: (This one’s my own)

63000 * CVIDTA Converts data statements into a data file.
63010 MAXFILES=1

63020 CLS:PRINT@41,"Workings.."

63030 OPEN "DATA.DO"™ FOR OUTPUT AS 1

63040 ON ERROR GOTO 63080

63050 READX:X$=STR$(X):X$=MID$(XS$,2)+","

63060 PRINT#1,X$;:PRINT@50,X$

63070 GOTO 63050

63080 CLOSE:PRINT@121,"Done'" :END

This program deals with DATA statements of the following form:

100 DATA 205,117,16,0,32,66,125,71,13,10

I chose to use very high program numbers for the simple reason very few
programmers ever use numbers that high, and it would almost certainly load the
program above the data statements from the original Loader program, without
accidently deleting any in the conversion to BASIC process. The program simply
reads the data statements, converts them to string data, and outputs it to a
new file named "DATA.DO".

In order to deal with HEX files, or program loaders which have the data in HEX
form in the data statements, I adapted code from a hex program loader. There
is one problem with this approach, it reads the HEX data as an entire line,
then separates the two=-byte hex code from the line, and converts it. This is
fine, as long as all the hex lines have an even number of characters in them.
This is usually the case, although I have run across lines with an odd number
of characters. Usually that can be fixed by moving one character from the end
of the line to the beginning of the next line (in the data statements). One
other problem, the conversion routine does not deal with "relocatable code",
which is often indicated by the presence of question marks in the hex state-
ments. A question mark is not a legal hex character, but is used by the loader
program to indicate where a calculated address must be added into the resulting
assembly language code. So, if the hex statements contain question marks, this
program won‘t do it.

63000 * CVTHEX Converts HEX data statements to a decimal data file

63010 D$="0123456789ABCDEF" :OPEN "DATA.DO" FOR OUTPUT AS 1

63020 CLS:PRINT@42,"Workinge.."

63030 ON ERROR GOTO 63100

63035 READ LNS$:L=LEN(LNS)

63040 IFL/2<>INT(L/2)THEN PRINT@121,"Data String Length Error":GOTO 63110
63045 FOR I=1 TO LEN(LNS$) STEP 2

- 48 =

s R MG W R Eee e

63050 C1 =(INSTR(1,D$,MIDS(LNS,I,1))=1)*16
63055 C2 =INSTR(1,D$,MIDS$(LNS,I+1,1))-1
63060 C1 = Cl+C2

63070 A$=STRS(C1):AS=MIDS(AS,2)+","

63080 PRINT#1,A$;:PRINT@55,A8;" "

63090 NEXTI:GOTO 63035

63100 CLOSE:PRINT@121,"Done"

63110 END

This program deals with data statements of the following form:

50 DATA "E1CD622CCD3142C36854CD0000CD"

Both of the above programs leave a comma at the end of the data written to the
new file, which should be removed before running the disassembler.

Speaking of the Disassembler, as mentioned before, it is an adaptation of Jim
Irwin‘’s SMALL.DIS. It reads the data file created by one of the above programs,
and provides a disassembled listing of the code. The listing goes directly

to the screen, and can be scrolled or stopped with a CTRL-S. For those who
want a printed copy of the output, just turn on your printer. If it“s connected
and ready, the program will automatically send a copy of the listing to the
printer. (Most of the lines and line numbers are intact, if you’d like to
compare this version to the original program.) I named it "DATA-D" for
"DATA-DISASSEMBLER".

0 ° DATA-D Data Statement Disassembler

2 ‘ adapted from Jim Irwin’s SMALL.100 disassembler

21 CLEAR1500:DEFSTRN-S:DIMN(255) :GOSUB31

22 CLS:INPUT "Filename: ";P

23 OPENPFORINPUTAS1:CLS

24 I[FNOTEOF(1)THENINPUT#1,AELSEEND

25 Q=" ":IFA>32ANDA<127THENQ=CHR$(A)

26 B=VAL(N(A)):IFB=0THENS=N(A) :GOSUB29:G0T024

27 IFB=1THENINPUT#1,X:S=MIDS$(N(A),2)+STR$(X) :GOSUB29:A=X:S=" ":Q=" "
:GOSUB29:G0OT024

28 INPUT#I,X,Z:S=M1D$(N(A),2)+STR$(256*Z+X):GOSUB29:S="":Q="":A=X:GOSUBZQ:A=Z
:GOSUB29:G0T024 .

29 IF(INP(187)AND6)=2THENLPRINTUSING" ### \ \ I":A,S,Q

30 PRINTUSING"### \ \ 1";A,S,Q:RETURN

31 DATANOP,RNZ,2LXI B,POP B,STAX B,2JNZ,INX B,2JMP,INR B,2CNZ,DCR B,PUSH B

32 DATAIMVI B,lADI,RLC,RST 0,UNDF,RZ,DAD B,RET,LDAX B,2JZ,DCX B

33 DATAUNDF,INR C,2CZ,DCR C,2CALL,IMVI C,lACI,RRC,RST 8,UNDF,RNC,2LXI D,POP D

34 DATASTAX D,2JNC,INX D, 1l0UT,INR D,2CNC,DCR D,PUSH D, IMVI D

35 DATAISUI,RAL,RST 16,UNDF,RC,DAD D,UNDF,LDAX D,2JC,DCX D,1lIN,INR E,2CC

36 DATADCR E,UNDF,1MVI E, 1SBI,RAR,RST 24,RIM,RPO,2LXI H

37 DATAPOP H,2SHLD, 2JPO,INX H,XTHL,INR H,2CPO,DCR H,PUSH H,I1MVI H,1ANI,DAA

38 DATARST 32,UNDF,RPE,DAD H,PCHL,2LHLD, 2JPE,DCX H,XCHG,INR L

39 DATA2CPE,DCR L,UNDF,IMVI L,1XRI,CMA,RST 40,SIM,RP,2LXI SP,POP PSW

40 DATA2STA,2JP,INX SP,DI,INR M, 2CP,DCR M,PUSH PSW,IMVI M, 10RI,STC

41 DATARST 48,UNDF,RM,DAD SP,SPHL,2LDA,2JM,DCX SP,EI,INR A,2CM,DCR A,UNDF

42 DATAIMVI A,1CPI,CMC,1RST 56,ADD,ADC,SUB,SBB,ANA,XRA,ORA,CMP

43 FORI=0TO63:READN(IL),N(I+192):NEXT:S="BCDEHLMA":K=64

44 FORI=1TO8:READR:FORJ=1TO8:N(K)=""MOV "4MIDS$(S,I,1)+","HMIDS(S,T,1)

45 N(K+64)=R+" "+MID$(S,J,1):K=K+1:NEXT:NEXT:N(I18)="HLT":RETURN

- 49 -

These three programs have become very useful in learning more about assembly
language programming. I
A final word...
DISPLY EQU 6DF 6H 3 ROM routine address (200) I
. define message to be displayed
MSG DM “Good Luck!”’
START LXI H,MSG 5 put pointer in HL where MSG is stored l
CALL DISPLY ; display the message
MVI A,7 s put BEEP in the accumulator -
RST 4 3 print the character in the accumulator I
RET 3 return to calling program
50 !

CHAPTER 20

"Paging" in TELCOM for neat printouts

This chapter describes a TELCOM utility which sends a form-feed to the
printer, by pressing a function key in TELCOM’s TERM mode.

Copyright 1987 Tony B. Anderson
All Rights reserved

Here’s a neat little utility for users of the Tandy 200 who do not normally use
the BRK (Break) key in TELCOM, which is also usable in the Model 100/102. 1In
the Tandy 200, we have previously developed methods of using the F6 key, via
the vector jump table, but the F7 key has been left pretty much alone, even
though the Break key is not often used - or at least is used by a relatively
small number of users.

This is a good example of using some of the unused bytes in the function key
definition table to hide a small patch that will stay resident and operational
without much attention. It will stay in place unless you run a program that
redefines the function keys, a poor programming technique, by the way, or you
suffer a cold-start which resets everything to the computer’s default settings.

RATTONALE:

I found that I needed the ability to send a form feed to the printer while
online, in order to separate program listings and files downloaded, or "echoed"
to the printer, from the system. Normally, my printer keeps up pretty well
with the incoming data flow, so I just had to wait for the printer to catch up
to a normal system pause, and press the printer’s form-feed button. This worked
pretty well until recently when I added a print buffer to my configuration.
That allowed the host computer to send data to me faster than my printer could
handle it, and it often happened that I would wait at a system break for some
minutes before the printer caught up, to where I could press that form-feed
button myself.

Since I use an external modem at 1200 baud, it was a simple matter to make a
short BASIC program, and leave it on the menu as FFJUMP.BA (Form-Feed Jump),
and simply drop out of TELCOM when I needed the form feed and run this program

which would send a form=feed to the printer and jump back into TELCOM. The
program form was simple:

1 LPRINT CHRS$(12) : CALL 25454 *(TERM entry address for the 200)

Of course, this was only usable when using the external modem. How much
simpler it would be, I thought, if I could simply do it with a function key

- 51 =

press, and why not use F7 which I never use for sending a break, anyway?

FOR THE TANDY 200:

The technique I decided on, was to use the F7 vector table to jump to a small
machine language program, hidden in one of the unused areas in the function

key definition area of BASIC, much like Phil Wheeler’s LFUTL (Linefeed Utility)
program does. Considering that some users might already have the linefeed
utility stuffed in the unused area behind the '"Menu'" definition of the F8 key,
I chose to use the area behind "Run'", the F4 key. The exact location can be
changed to suit a user’s requirements, if he has customized his BASIC function
keys differently. The small, eight-byte machine language program can be hidden
almost anywhere, even in the LOMEM area, if that’s being used.

The machine language code to send a form-feed to the printer in the Tandy 200
is as follows:

MVI A,12 sput Formfeed in the A register
CALL 23060 ;send contents of A to the printer
JMP 25454 3jump back into TERM

The program was too small to "assemble", so I simply looked up the opcodes,
and converted the call and jump addresses into the LO/HI form needed, and came
up with a list of numbers which represented exactly what the above program
would be if "assembled", and built a short BASIC program using the CHRS$()
technique to load them into the Key 4 definition as illustrated below in line
l. The first two pokes in line 2, poke the entry address into the F7 vector
table address, so pressing F7 would send you to the entry address. The first
few times I tried it, it didn“t work. It would work perfectly as a CALL from
BASIC, but not from TELCOM.

James Yi, a frequent Tandy 200 programmer, suggested that I separate the ML
code from the "Run"+CHR(13) description with a CHR$(1l), then poke a zero into
that position to separate the hidden code from the "normal" function key
description, and to call the routine from the "image'" table, instead of the
"working" table of function key definitions. It seems the working table is
redefined and not available when you’re in TELCOM. When those suggestions were
added, the program worked perfectly, and is listed here in the final form.

1 KEY4,"Run"+CHR$(13)+CHRS$(1)+CHRS$(62)+CHRS(12)+CHRS (205)+CHRS (20)+CHRS(90)+
CHRS$(195)+CHRS$(110)+CHRS$(99)
2 POKE62785,41:POKE62786,241:POKE61737,0

If you want to move it from the key 4 definition area to somewhere else, you’ll
need to change the pokes in line 2 to accomodate the new location. The first
two are the entry address of the new location, and the third poke is where that
CHR$(1) is stored in the definition image table.

Should you want to remove the program, and "unhook" it from the vector table
jump, reenabling whatever function was there originally, simply go into BASIC
and type the following:

KEY4,"Run"+CHR$(13) <ENTER>
POKE 62785,168:POKE 62786,156 <ENTER>

- 52 =

Or, you could add line numbers and save it as a "cancelling" program.

FOR THE MODEL 100/102:

The routine is adaptable to the Model 100 and 102; the call and jump addresses
are simply changed to accomodate the 100°s system. The program can be stored

in a function key definition the same way, and could be set up to operate from
either the F6 or F7 function keys, whichever is most useful. If it is hidden

in the unused area of Key 4, as for the 200 version, and called from an F7 key
press in TELCOM, the program would be as follows:

MVI A,12
CALL 19285
JMP 21589

1 KEY4,"Run'+CHR$(13)+CHR$ (1)+CHR$(62)+CHR$ (12)+CHRS (205)+CHRS (85)+CHRS(75)+
CHRS$(195)+CHRS(85)+CHRS(84)
2 POKE64270,62:POKE64271,248:POKE63550,0

Should you wish to disable this and restore the system to it’s normal defaults,
then go into BASIC and type:

KEY4,"Run"+CHR$(13) <ENTER>
POKE 64270,58:POKE 64271,31 <ENTER>

Or, you could add line numbers and save this as a '"cancelling" program.

S

CHAPTER 21

How to hide machine language routines in a BASIC program

This chapter describes a seldom=-used technique to hide your own machine
language patches or routines in a BASIC program, where you can call them
at a fixed location whenever you need them.

Copyright 1989 Tony B. Anderson
All Rights Reserved

One of the factors involved in running assembly language programs in the Tandy
portables, is that the program must run from a fixed location in RAM; the same
location every time. 1In this design, the area between HIMEM and MAXRAM has
been reserved for operation of such programs through the process of clearing
one program out of the location, setting the HIMEM pointer, loading the next
program into the area, and executing (running) it. There are often cases
where this is inconvenient, such as when you have some other assembly language
program that needs to be in that area, too, such as a DOS to access disk files,
or a text formatting program. In such cases it is often possible to relocate

an assembly language program to run in a different area, to eliminate conflicts
between the two programs.

In some cases, you don’t need an entire assembly language program, just a patch
or small subroutine, to speed up the program. In those cases, it is usually
inconvenient to load the routine into the reserved area in the normal manner.

It has been found that many assembly language routines can be loaded into the
previous screen buffer area normally used by TELCOM. In the 100/102, this is
about 320 bytes, and in the 200, about 640 bytes in size.

Another technique used by some commercial software houses, is to hide the
assembly language code in the first BASIC program in RAM. Because of an
interesting quirk in how programs and files are stored in RAM space, the first
BASIC program you load into RAM in an empty machine does not move, does not
change it“s location. All other programs and files can be moved around in RAM,
according to what the machine needs to do to manage the RAM space. But that
first program never moves. This has led to the realization that you can create
a dummy BASIC program consisting of REMark lines, and stuff assembly language
code into those REM lines, which leaves it at a fixed location, which makes it
CALLable from any program that needs the routine. Lots of little routines and
patches can be handled in the machine in this manner; things such as linefeed
patches, case conversion routines, macro sending routines, Xmodem routines that
can be called from TELCOM, etc. The secret lies in understanding how BASIC

stores program lines, and how you can use that to define storage space for your
assembly language routines.

- 54 =

So, the place to start is in understanding how BASIC stores each line of any
BASIC programe.

A tokenized BASIC line is stored in the following format: The first two bytes
in a line are the low order/high order bytes indicating the line number. The
second two bytes are a low order/high order pointer to the beginning of the
next line (one byte higher than the end of the current line). Up to 255 ascii
characters (not tokens), which comprise the statements, followed by a null
byte, character zero. The end of the BASIC program is signified by three nulls
in a row. Keywords in the statements are reduced, as far as practical, to a
single byte "token", which represents the keyword. "REM" for example, is
reduced to the single byte character 142.

It is a simple matter to save a single-line BASIC program in an empty machine,
a line with a REM in it, and use peeking techniques to find out where the REM
byte is located. 1In a 32K machine, the first byte of available RAM for storage
of your BASIC programs is 32769. 1In a 24K machine, it‘s 40965. A simple loop
will explore the first few bytes in RAM, and tell you where the REM is stored
in your single-~line program.

First, create a line which contains a line number... any line number, but use

a number less than 10 - we’re dealing with ascii display bytes, and 1=9 display
in less space than 65010. If you must use a line number greater than 10, then
stick to 10-99 and reduce you reserved space to 249 bytes. Follow the line
number with a space, the letters REM, followed by 250 periods or spaces; the
periods are easy to see, and easy to find in RAM. The format of such a line
would look like this:

1 REM.......‘...'00000.0I.O.......0.0....0....l...........‘.'.00...0..‘0"0....
LR R R RN RN I R IR A B O B I BB B I B B BB B B BN I A B)
LRI R R R R R I I R N A N)

Ssessess TN BRSO N

Save that as a BASIC program with some unique name, like MLHOLD or something.
Next, type the following following short program into BASIC, don’t save it,
but just run it to see where that REM is located.

1 FOR A=32769 TO 32779
2 IF PEEK(A) = 142 THEN PRINT A
3 NEXT

If you are using a 24K machine, including the Tandy 200, change line 1 to read:
1 FOR A=40965 TO 40975

When you run the program, it will tell you the address where the REM is stored
in RAM. Knowing that, you can write, and store any assembly language program
or routines in the following 250 bytes, but do not use the byte where the REM
is stored. How do you get the program into those 250 bytes? Simple. You
write your assembly language program or routines, convert the source code to
data statements, and poke the values of the code into the REM, starting at 1
byte higher than the location of the REM. If you don”t use all 250 bytes, you
can add other routines later on, in the space occupied by the extra periods.
If you forget what the next available location is for new code, simply peek
through the beginning of RAM space for aseries of periods.

- 55 =

If you don’t ever plan on adding more code to this area, you can shorten those
250 periods to the exact number required to hold your code. Conversely, if you
have a program or routine which is larger than 250 bytes, just add more lines
to your dummy program, exactly as the first line (with a different line number,
of course), and at the end of the first 250 bytes of code, jump over the six
bytes required for the end of line marker, the line number and pointer to the
next line, and the REM token in the second line. You then have a 500-byte
capacity for your programe.

CAUTIONS: Once you have poked assembly language into the REM statements, never
list the dummy program or attempt to edit it with the EDIT command. The inter-
preter will attempt to restructure your code into readable ascii characters,
which will likely destroy your code, and can easily lead to a code start.

Do not attempt to RUN the dummy program. There may be binary zeros in the
assembly code in the REM statements which will confuse the interpreter, which
could cause a cold start.

It would be a good idea to make the dummy program invisible, so it can’t be
accidently run from the main menu, too. Refer to Chapter 17 on how to do this.

Next step: Suppose you already have one of those "first programs in RAM" type
of programs; like P.G. Design’s OMENU program, or a program called SUPERA, or

UltraSoft’s DOS for the Tandy Portable Disk Drive. In that case, it‘s a little
harder, but not muche.

Use RAMDIR for your machine to find out where that program is located in RAM;
both starting and ending points. (you’ll have to have a second file in RAM

to see where the first one ends; 1 byte lower than the start of the second
program or file) Then you”ll have to look through the first program’s code to
find it”“s line numbering scheme; you”ll need a monitor program to do this, or
do extensive peeking and figuring out what’s what. Eventually what you do is
to load the first program into BASIC, add a new line number at the end as des-
cribed above, with a higher line number than any used in the original program,
and peek through RAM from the end of the original program, looking for your REM
statement. You might want to make it two REM”s in a row to make it easier to
find. Then write your assembly code to fit the available addresses and poke
it into the new line. Your routines will be there as long as the original
first program is there.

The technique for use with P.G. Design’s Menu program is to add a line 65000 to
the MENU.BA program. In this case, your hidden code is limited to 246 bytes,
rather than 250. - You’re displaying more ascii characters with the larger line
number. If you use two REM"s to make it easier to find, reduce your periods to
245 bytes.

Then peek around near the end of the program to find your REMs. The following
program has been used successfully.

0 ° REM finder for MENU.BA

1 FOR A=32325 TO 34570
2 IF PEEK(A)=142 AND PEEK(A+l1)=142 THEN PRINT A
3 NEXT

- 56 =

Now... here’s an interesting technique. Suppose you write a little assembly
language program, and store it in a REM statement in a first BASIC program in
RAM. You know what the entry point is for that routine, it”s usually the first
byte of the routine in well-designed code. Just for an example, let’s say it’s
32774. You can call that routine with a function key press in BASIC by putting
a CALL on an unused function key, following the technique given in Chapter 25.
Typing: '

Key 6,"CALL32774"+CHR$(13)
+++ will define function key 6 to call your routine whenever it‘s pressed.

As a practical example, suppose your assembly language routine/program is a
word and line counter for TEXT files. Further assume that when you wrote it,
you wrote it as a stand alone program that asks for a filename to be checked,
does the checking and reports the results. When you want to check the word and
line count in a file you’re writing, just go into BASIC and press the Fé6 key.
It calls the program, prompts you for the filename, and reports the results.
Your program can even wait for a key press and return you to the menu. Or,
with a little more complex techniques, jump right back into the TEXT file you
just checked, for more editing or writing.

- 57 =

CHAPTER 22

Common Pokes for the 100/102

This chapter deals with peeking and poking around in the reserved RAM
memory locations, lists some useful addresses and the values that may
be poked to them for special applications.

THIS CHAPTER [S MODEL 100/102 SPECIFIC.

Copyright 1984 Tony B. Anderson
All Rights Reserved

The Tandy portable computers have 64K of addressable memory. 1In the 100/102,
the first 32K is read-only memory, in the form of a ROM chip that contains the
operating system and programs, and the second 32K is user RAM space. 1In the
Tandy 200, the first 40K is read-only memory, with the last 24K available as
user RAM space. You can peek into all the available addresses, both in ROM and
RAM, but you can only poke values into the RAM addresses.

Generally there is no purpose in peeking and poking into most of RAM space, in
the area where programs and files are stored. Files in RAM are managed dynam=-
ically, which means they get moved around in RAM space, depending on what you
may be doing at any given time, so specific locations where you might want to
peek or poke are likely to move without notice. There are some ways available
with advanced programming techniques to locate specific things if you really

need to do so, but are not appropriate to this texte.
What is valuable, is to be able to peek and poke into the reserved RAM area
above MAXRAM, where the operating system stores flags, buffers, pointers, and

other important operating information. This chapter lists some useful addresses

in the reserved RAM space, and values you can poke into those addresses for
some special applications.

TELCOM FUNCTIONS:
POKE 63064,0 will set TELCOM to HALF DUPLEX mode.
POKE 63064,255 will set TELCOM to FULL DUPLEX mode.
POKE 63065,255 will set TELCOM to ECHO to printer. (Turns ECHO on)
POKE 63065,0 will set TELCOM to not ECHO to printer. (Turns ECHO off)

POKE 63066,1 will set TELCOM to send a LF (line feed) after a CR (carriage
return) when uploading (sending) files. Some devices need the linefeed.

- 58 =

POKE 63066,0 will reset to No LF after CR (default condition)

To be able to clear the screen when in TELCOM, type the following two pokes
in BASIC, before you use TELCOM. POKE 64268,49 and POKE 64269,66. Then when
you want to clear the screen, just press the F6 key. == To reset to normal
operation, in BASIC, type POKE 64268,247 and POKE 64269,127. == These two
statements can be entered on one line, with a colon between them; i.e.

POKE64268,247:POKE64269,127.

It is often useful to poke TELCOM status into memory from a basic program, for
example, in a file transfer program. COM "Status" is held in RAM in locations
63067 to 63071, in a five character field. The leading character is the baud
rate, and if this is all you want to change, you can use the direct command:
POKE 63067,ASC("M") (or whatever you want to poke there).

If, for example, you want to reset TELCOM to modem status before leaving a file
transfer program, you could add this short routine to your program:

1000 REM Pokes "M7I1E" into "Status"
1010 FOR A = 63067 TO 63071

1020 READ B : POKE A,B

1030 NEXT

1040 DATA 77,55,73,49,69
IS0 REM M 7 I 1 E

The values in the DATA statement are the ASCII value of the character you want

to poke into memory. Change the values in the DATA statement to set any Status
required.

There are two changes that will enhance TELCOM‘s basic functions by providing
two additional function key actions, using F6 and F7. While in TELCOM’s TERM
mode, pressing F6 will respond with the current number of bytes free in RAM;
and F7 will give you a list of file names in RAM, similar to the F1=FILES
command in BASIC. This short routine which will make the necessary pokes:

1 FOR I = -=1268 TO -1265
2 READ X : POKE I,X

3 NEXT

4 DATA 172,126,58,31

While you will probably never need this, the dialing pulse rate is stored at
RAM address 63019, and can be set, or changed with a POKE.

POKE 63019,1 = 10 pulses/second
POKE 63019,20 = 20 pulses/second

BREAK KEY = CONTROL-C - FUNCTION KEYS

The interrupt routines can be turned on and off at RAM location 63056. The
command to disable one of these functions will disable them all. There is no

- 59 -

way to "selectively" disable one or the other in this manner. It is possible

to trap keyboard input and discard unwanted input, but that technique is beyond
the scope of this text.

POKE 63056,128 will disable the Break Key, Control-C and Function Keys.

POKE 63056,0 will re—enable the same functions.

SECRET STORAGE SPACES IN RAM

There are 36 bytes of RAM which can effectively be rendered invisible to the
operating system, and will be protected from everything short of a cold start,
which can be used to store an identification name or number permanently in RAM.
You might also find other uses for this 36 bytes. However, if you have instal-
led an alternate ROM in your computer, these 36 bytes are no longer available

to you, as they are the bytes that hold the M/L routines for accessing the
optional ROM.

If you are not using an optional ROM and want to use this area to store a name
or other data, first POKE 62975,201 to completely disable any residual code

that might already be in this area. Then, do these two: POKE 62981,201 and
POKE 63018,255.

Once these last two pokes are done, addresses 62982 to 63017 are free, and can
be used for anything you want. The above pokes remain effective until a cold-
start occurs. What’s happening here is that the original code from 62981 to
63011 checks for the existence of an optional ROM everytime you power up. If
ROM is installed, then the value 255 is stored in 63018, and the name of the
ROM (for the Menu) will be placed in 64164=64171. Code from 63012 to 63017

is used when choosing the option ROM from the Menu.

The POKE 62981,201 puts a M/L RETurn there, which effectively makes the M100
think that the optional ROM is installed. You need the POKE 63018,255 to
prevent a cold-start on power=-up.

Whatever you put in those 36 bytes will stay there, regardless of whatever
BASIC or normal machine language programs you are running. Obviously, you
use POKE commands to get whatever you want into those locations. You can poke
data into those 36 bytes, or a special machine language routine you need. But

remember, this precludes your use of ROM-based software in the optional ROM
socket.

Interested in more free RAM to poke stuff into? Space used in TELCOM to store
the previous screen (64704 to 65023) is generally safe, although it is also
used for lots of different things, including some Menu Directory stuff. The
lowest addresses might be useful. Also, the optional ROM LUCID makes use of
some of this area, if it is installed. This area is more useful for running
small machine language programs, rather than any long-term data storage.

The MDM & COM receive buffer (65350 to 65413) can be used as long as MDM/COM

ports are not being accessed for input or output. That’s 64 bytes to poke away
in, at least for temporary use during a running program. If a running program

does a CLEAR or LOADM, then all variables are erased. Before using either of

- 60 =

these statements, a program can poke important variables, values or characters
it wants to save into these unused RAM areas, then PEEK them back later.

There are also a few bytes available in each of the function key definition
slots in the function key definition table, 63498-63625, but you’ll have to
look for the available bytes, since some function keys will have definitions
stored in the same table.

BASTC PROGRAM POKES

The following pokes would generally be used from a BASIC program, but could
also be used in direct mode, if needed.

As you know, SCREEN,O0 will turn off the label line. However, in some programs,
it"s also desirable to prevent the user from pressing the LABEL key to turn the
label line back on. POKE 64173,0 will disable the Label Key, so that pressing
it will have no effect. 1If the label line is on, it will stay on. If it is
off, it will stay off. However, the effect is temporary; returning to the menu
will automatically re=enable the LABEL key.

POKE 64173,0 will disable the Label key.

POKE 64173,1 will re-enable the Label key.

POKE 63048,175 will turn on Reverse Video display, until cancelled.

POKE 63048,0 will turn off reverse video, and return to normal display.

POKE 65348,175 turns Sound Off.

POKE 65348,0 turns Sound On.

To place a string of characters in the keyboard buffer, just as if they had
been typed in from the keyboard, use the following proceedure: (Assume that the
string you want to put in the buffer is A$) Use the following line, either in
direct mode, or written as a line of code in your program.

FOR I = 1 TO LEN(A$):POKE 65449+2*I, ASC(MIDS(A$,I,1)):POKE 65450+2*1,0:NEXT
:POKE 65450,I~1

This puts the characters from A$ into the odd addresses from 65451+, zeroing
out the even addresses which are reserved to indicate Function key entries;
then puts the number of characters in the buffer into 65450. This is very
useful before a program does a SAVEM, LOAD, or MERGE, which would cause the
program to stop running. Using the above code, with A$ = "RUN"4+CHRS$(13) will
make a program restart automatically, which is particularly useful after the
SAVEM statement in machine language loaders. But be careful, the length of AS$
must be less than 32 characters.

Here’s a quickie poke that will initialize the RND seed based on the time:

o=

J = 63795:FOR I = 64634 TO 64637:POKE I,16*PEEK(J) + PEEK(J+1):J = J+2:NEXT

And, this one will re-seed the random number generator with one of 125 possible
random values obtained from a running counter: (thanks to Larry Gensch)

POKE 64634,PEEK(63791)

The following poke will send the next PRINT statement in a BASIC program to the
printer port, instead of to the LCD screen. It works only on the next PRINT
statement in a program, so has limited usefullness, but might be useful in a
trace or debugging program. Just add it into any BASIC program as a BASIC
statement.

POKE 63096,1

Jim Irwin passed on the information that RAM address 64228 is the place to
intercept the print routine, just before it prints a character. Some commercial
software uses that location for an intercept to add line feeds. But, if one
wanted to, they could intercept the character and re-direct it to another
location, to the serial port, for example.

If you wish to disable printer output completely, in order to prevent a program
lock=up if the printer is not on and ready, the following two pokes will bypass
the printer port, effectively closing the port:

POKE 64228,136 : POKE 64229,20
To return to normal, use:
POKE 64228,243 : POKE 64229,127

The "bypass'" poke, will apparently also prevent the PRINT key in the function
key row from being used.

Alternately, if you wish to test the printer port to determine if the printer
is powered up and ready to accept data, you can use the following statement in
a BASIC program:

IF (INP(187)AND6) <> 2 THEN BEEP : PRINT "Printer Not Ready'" : STOP

Or you can devise alternate tests: a 0 means the printer is not ready; a 2
means it is; and a 6 means it is not connected.

IF (INP(187)AND6) = O THEN (Printer not ready)
IF (INP(187)AND6) = 2 THEN (Printer ready)
IF (INP(187)AND6) = 6 THEN (Printer not connected)

Of course you realize, any address which can be "poked" can also be "peeked" to

determine what is currently happening at that location, or what will happen
depending on the value set at that address.

- 62 =

CHAPTER 23

Common Pokes for the Tandy 200

This chapter deals with peeking and poking around in the reserved RAM
memory locations, lists some useful addresses and the values that may
be poked to them for special applications.

THIS CHAPTER [S TANDY 200 SPECIFIC.

Copyright 1989 Tony B. Anderson
All Rights Reserved

The Tandy portable computers have 64K of addressable memory. In the Tandy 200,
the first 40K is read-only memory, with the last 24K available as user RAM
space. You can peek into all the available addresses, both in ROM and RAM, but
you can only poke values into the RAM addresses.

Generally there is no purpose in peeking and poking into most of RAM space, in
the area where programs and files are stored. Files in RAM are managed dynam-
ically, which means they get moved around in RAM space, depending on what you
may be doing at any given time, so specific locations where you might want to
peek or poke are likely to move without notice. There are some ways available
with advanced programming techniques to locate specific things if you really
need to do so, but are not appropriate to this text.

What is valuable, is to be able to peek and poke into the reserved RAM area
above MAXRAM, where the operating system stores flags, buffers, pointers, and
other important operating information. This chapter lists some useful addresses
in the reserved RAM space, and values you can poke into those addresses for
some special applications.
TELCOM FUNCTIONS:

POKE 61241,0 will set TELCOM to HALF DUPLEX mode.

POKE 61241,255 will set TELCOM to FULL DUPLEX mode.

POKE 61242,255 will set TELCOM to ECHO to printer. (Turns ECHO on)

POKE 61242,0 will set TELCOM to not ECHO to printer. (Turns ECHO off)

POKE 61243,1 will set TELCOM to send a LF (line feed) after a CR (carriage
return) when uploading (sending) files. Some devices need the linefeed.

POKE 61243,0 will reset to No LF after CR (default condition)

- 63 =

_

To be able to clear the screen when in TELCOM, type the following two pokes
in BASIC, before you use TELCOM. POKE 6$2783,77 and POKE 62784,79. Then when
you want to clear the screen, just press the F6 key. =-- To reset to normal
operation, in BASIC, type POKE 62783,168 and POKE 62784,156. =-- These two
statements can be entered on one line, with a colon between them; i.e.

POKE62783,168:POKE62784,156

It is often useful to poke TELCOM status into memory from a basic program, for
example, in a file transfer program. COM "Status" is held in RAM in locations
62144 to 662150, in a seven character field. The leading character is the baud
rate, and if this is all you want to change, you can use the direct command:
POKE 62144,ASC("M") (or whatever you want to poke there; ASC("5"), etc.).

If, for example, you want to reset TELCOM to modem status before leaving a file
transfer program, you could add this short routine to your program:

1000 REM Pokes "M7I1lENI" into "Status"
1010 FOR A = 61244 TO 61250

1020 READ B : POKE A,B

1030 NEXT

1040 DATA 77,55,73,49,69,78,73

1050 REM M 7 I 1 E N I

The values in the DATA statement are the ASCII value of the character you want
to poke into memory. Change the values in the DATA statement to set any Status
required.

There are two changes that will enhance TELCOM’s basic functioms by providing
two additional function key actions, using F6 and F7. While in TELCOM’s TERM
mode, pressing F6 will respond with the current number of bytes free in RAM;
and F7 will give you a list of file names in RAM, similar to the F1-FILES
command in BASIC. This will superceed the "Break" function of the F7 key if
used. This short routine which will make the necessary pokes:

1 FOR I = 62783 TO 62786
2 READ X : POKE I,X

3 NEXT

4 DATA 253,154,42,42

While you will probably never need this, the dialing type and rate flag is
stored at RAM address 61172, and can be set, or changed with a POKE.

POKE 61172,0
POKE 61172,1
POKE 61172,14

Tone Dialing
10 pulses/second
20 pulses/second

Telcom originate or answer mode is stored at location 61252, 0 = Originate
mode, and any number greater than 0 = Answer mode.

- 64 -

BREAK KEY = CONTROL-C - FUNCTION KEYS

The interrupt routines can be turned on and off at RAM location 61234. The
command to disable one of these functions will disable them all. There is no
way to '"selectively" disable one or the other in this manner. It is possible
to trap keyboard input and discard unwanted input, but that technique is beyond
the scope of this text.

POKE 61234,128 will ‘disable the Break Key, Control-C and Function Keys.

POKE 61234,0 will re-enable the same functions.

SECRET STORAGE SPACES IN RAM:

The Tandy 200 has a built-in optional ROM program, the MSPLAN spreadsheet, plus
the ability to install and use a second optional ROM in an optional ROM socket.
Consequently there is always at least one optional ROM available to the system,
and the 36 "secret bytes" available to 100/102 users is not available to the
200 owner. But there is still storage space available in the 200.

The space used by TELCOM to store the previous screen (63408-64047, 640 bytes)
is generally safe, although it is also used for lots of different things, inc-
luding some Menu Directory stuff. The lowest addresses might be useful. Also,
the optional ROM LUCID makes use of some of this area, if it is installed.

This area is more useful for running small machine language programs, rather
than any long-term data storage.

The MDM & COM receive buffer (64758 to 64821) can be used as long as MDM/COM
ports are not being accessed for input or output. That’s 64 bytes to poke away
in, at least for temporary use during a running program. If a running program
does a CLEAR or LOADM, then all variables are erased. Before using either of
these statements, a program can poke important wvariables, values or characters
it wants to save into these unused RAM areas, then PEEK them back later.

There are also a few bytes available in each of the function key definition
slots in the function key definition table, 61685-61811, but you’ll have to
look for the available bytes, since some function keys will have definitions
stored in the same table.

BASIC PROGRAM POKES

The following pokes would generally be used from a BASIC program, but could
also be used in direct mode, if needed.

As you know, SCREEN,0 will turn off the label line. However, in some programs,
it’s also desirable to prevent the user from pressing the LABEL key to turn the
label line back on. POKE 61194,0 will disable the Label Key, so that pressing
it will have no effect. If the label line is on, it will stay on. If it is
off, it will stay off. However, the effect is temporary; returning to the menu
will automatically re-enable the LABEL key.

POKE 61194,0 will disable the Label key.

- 65 -

POKE 61194,1 will re-enable the Label key.
POKE 64756,175 turns Sound Off.

POKE 64756,0 turns Sound On.

To place a string of characters in the keyboard buffer, just as if they had
been typed in from the keyboard, use the following proceedure: (Assume that the
string you want to put in the buffer is A$) Use the following line, either in
direct mode, or written as a line of code in your program.

FOR I = 1 TO LEN(A$):POKE 64798+2*I, ASC(MIDS(AS$,I,1)):POKE 64799+2*T,0:NEXT
:POKE 64798,I~1

This puts the characters from A$ into the even addresses from 64800, zeroing
out the odd addresses which are reserved to indicate Function key entries;
then puts the number of characters in the buffer into 64798. This is very
useful before a program does a SAVEM, LOAD, or MERGE, which would cause the
program to stop running. Using the above code, with A$ = "RUN"+CHR$(13) will
make a program restart automatically, which is particularly useful after the
SAVEM statement in machine language loaders. But be careful, the length of A$
must be less than 32 characters.

Here’s a quickie poke that will initialize the RND seed based on the time
of day:

J = 61987:FOR I = 63277 TO 63280:POKE I,16*PEEK(J) + PEEK(J+l):J = J+2:NEXT

And, this one will re-seed the random number generator with one of 150 possible
random values obtained from a running counter: (thanks to Larry Gensch)

POKE 63277,PEEK(61983)

If you wish to test the printer port to determine if the printer is powered up
and ready to accept data, you can use the following statement in any BASIC
program:

IF (INP(187)AND6) <> 2 THEN BEEP : PRINT "Printer Not Ready" : STOP

Or you can devise alternate tests: a 0 means the printer is not ready; a 2
means it is; and a 6 means it is not connected.

IF (INP(187)AND6)
IF (INP(187)ANDG6)
IF (INP(187)AND6)

0 THEN (Printer not ready)
2 THEN (Printer ready)
6 THEN (Printer not connected)

Of course you realize, any address which can be "poked" can also be "peeked" to
determine what is currently happening at that location, or what will happen
depending on the value set at that address.

- 66 =

CHAPTER 24

Some Additional Useful Pokes

This chapter describes how to use the unused function keys in TELCOM, in
both the 100/102 and Tandy 200, to enable certain functions, calls or
jumps; such as clearing the screen, listing files or free RAM space, Or
jumping to BASIC. Some interesting possibilities become available once
you know about the jump table addresses.

Copyright 1986 Tony B. Anderson
All rights reserved.

Both the 100/102 and Tandy 200 contain a vector table, which is referenced when
there are interrupts generated in the computer. Some useful function key
interrupts are in this table. The vectors tell the computer to jump to another
location, usually a ROM routine, which does something, then returns to the
location where the interrupt was originally generated. TELCOM has two such
interrupt vectors in the table, for the F6 and F7 function keys in the TERM
mode of operation. Pressing either F6 or F7 causes the computer to look at the
table, to see where it is supposed to jump to. Normally the vector table holds
a RETurn instruction, so pressing the key does nothing. But you can cause
these keys to do other things, by redirecting control to other ROM routines by
poking new addresses into the vector table. These "vector addresses" are often
called "system hooks", because they allow assembly language programmers to

hook into the normal operating system routines.

One easy change, a couple of pokes, will allow a user to clear his screen when
in the TELCOM program, by pressing either F6 or F7, providing that no conflict=-
ing machine language program is being used, such as the Holmes Chipmunk’s CDOS,
Acroatix” POWR-DISK, or Traveling Software’s TS-DOS; or any other program which
alters the original function key hooks in the vector table. Users with the
above programs cannot use this technique, unless the program conflicts are
resolved first.

The pokes effectively reroute the function key interrrupt routine, so as to
pass the operating system control through the chosen routine, whenever the
function key is pressed, and then return to the normal keyboard scan routines.

Bottom line, the pokes stick a CALL address into the vector table that tells
the computer where to go when the key is pressed. Using this same technique,
you can cause the computer to execute any documented CALL when the function key
is pressed. 1In TELCOM, in the Model 100/102, F6 and F7 are available. In the
200, F6 is available, F7 being used for a "Break" function - sending a "Break"
signal through the modem, but the same general technique applies... you can use
the function key to branch to any known CALL function, by converting the known
address of the CALL to low-order/high-order form, and poking the resulting
numbers into the vector table at the indicated addresses. If you don’t use the

- 67 =

F7 key, you can redefine it“s function, too, but you won’t be able to remove
the "Brk" letters above ‘the key. Unfortunately, the label line is defined in
the ROM, and there is no convenient way to add letters for your new functions,

or to remove letters from the display without additional assembly language
programming.

The addresses for some common CALL functions are given in the Model 100 Tech=-

nical Reference manual, and many more have been located and defined by users.
Still more can be can be gleaned from reading available ROM/RAM maps, including
the one given later in this book.

For the Model 100: (to enable Clear Screen)

For F6:
POKE 64268,49 : POKE 64269,66

For F7:
POKE 64270,49 : POKE 64271,66

Note that the numbers 49 and 66 are the low/high=order address for the CALL
function which clears the screen and homes the cursor. 64268/64269 is the F6
vector address, and 64270/64271 is the F7 vector address. Also note that two-
part pokes like this should be entered on a single line in BASIC.

Here are some other functions you might like to use, instead of the Clear
Screen command.

Clear Screen: 49 and 66 (CALL 16945)

Do Nothing: 243 and 127 (CALL 32755)
Files: 58 and 31 (CALL 7994)
Free RAM: 172 and 126 (CALL 32428)

Reverse Video: 105 and 66 (CALL 17001)
Normal Video: 110 and 66 (CALL 17006)
Jump to BASIC: 73 and 108 (CALL 27721)
Motor On: 168 and 20 (CALL 5288)
Motor Off: 170 and 20 (CALL 5290)

For the Tandy 200: (to enable Clear Screen)

For F6:
POKE 62783,77 : POKE 62784,79

For F7:
POKE 62785,77 : POKE 62786,79

62783/62784 is the F6 vector address, and 62785/62786 is the F7 vector address.

Alternate functions:

Clear Screen: 77 and 79 (CALL 20301)

Do Nothing: 168 and 156 (CALL 40104)
Files: 42 and 42 (CALL 10794)
- 68 =

Free RAM: 253 and 154 (CALL 39677)
Jump to BASIC: 143 and 131 (CALL 33679)
Motor On: 192 and 21 (CALL 5568)
Motor Off: 194 and 21 (CALL 5570)

Note that in the above groups, where the numbers are given as "194 and 21", the
first number, "194" is poked into the first address given for the vector table
address, and the second number, "21", is poked into the second address.

Don“t know how to break a CALL address down into the low/high format? Simple;
use this short program. You give it the known decimal address of the ROM
routine, and it gives you the two numbers to poke into the vector table.

0 ‘ Decimal to Lo/High Hex Conversion
10 CLS:PRINT

20 INPUT" What number'" ;N:PRINT

30 X1=INT(N/256) :X2=N-(X1%*256)

40 PRINTX2;X1:PRINT

- 69 -

CHAPTER 25

High Memory Map

This chapter lists most of the addresses in the reserved area of RAM
above the MAXFILES partition. This is the most useful area for peeking
and poking.

Copyright 1989 Tony B. Anderson
All Rights Reserved

Addresses followed by a + sign indicate that the address is the first part of
a two-byte data field. In cases where hexidecimal numbers are stored, the low
order byte is stored first, followed by the high order byte, as in standard
assembly language hex notation.

Addresses with a plus sign, followed by a number indicate that the following
"n" number of bytes are part of the same field. Example: 61234+7 indicates

that address 61234 and the following 7 bytes comprise one 8-byte group of data.

Addresses with a plus sign, followed by a question mark indicate that the
address is the start of a field, the size of which is not documented.

100/102 200 Description

62960 61104 Normal MAXRAM address
62960+ 61104+ Stores MAXRAM address
62964+ 61108+ Holds HIMEM address
62969+2 61113+2 RST 5.5 vector
6297242 61119+2 RST 6.5 vector
62975+2 61122+2 RST 7.5 vector
62978+2 Low power trap routine
62981+30 Option ROM code
63012+6 61167+5 Option ROM code

63019 61172 Dialing flag

- 70 =

|
l 63024 61181 Fl key on/off flag
63025 61182 F2 key on/off flag
l 63026 61183 F3 key on/off flag
l 63027 61184 F4 key on/off flag
63028 61185 F5 key on/off flag
' 63029 61186 F6 key on/off flag
63030 61187 F7 key on/off flag
l 63031 61188 F8 key on/off flag
l 63032 61189 Current screen in use
63033 61190 Cursor position = Row, 0=7
I 63034 61191 Cursor position - Column, 0-39
63035 61192 Number of active lines on screen, 100/102, 0-8; 200, 0-16
. 63036 61193 Screen widthj; 0-40
l 63037 61194 Label line on/off flag; O=off, 255=on
63038 61195 Screen scroll flag; O=scroll, 19l=secroll locked
l 63049 Cursor flag; O=off, l=on
63040 Cursor line number
I 63041 Horizontal Print position
l 63048 Reverse video flag; O=normal, l=reverse
63054 X pixel set location
l 63055 Y pixel set location
63056 61234 Break, “C, and Function key flag; O=enabled, 128=disabled
I 63058 61236 BASIC error trap
l 63060 61238 Number of interrupts pending
63063 . 61240 Power down setting
l 63064 61241 Duplex flag; O=Half, 255=Full
63065 61242 Printer Echo flag; 0=0ff, 255=0n
l 63066 61243 TELCOM’s LF after CR switch; O=off, l=on
l -71 -

63067 61244 TELCOM device/baud rate; 77=Modem, 53="5" (1200), etc.
63068 61245 Word length (bits); 55="7", 56="8"
63069 61246 Parity; 69="E", 73="I", 78="N", 79="0O"
63070 61247 Stop bits; 49="1", 50="2"
63071 61248 Xon/Xoff flag; 69=enabled, 68=disabled
61249 Character filter flag
61250 Incoming linefeed flag
61252 Originate/Answer flag

63073+ 61257+ CALL target address

63079 61266 OUT command code

63082 61269 INP command code

63092 Value of LPOS

63093 61280 Printer/screen output flag; O=lecd, l=lpt
63096+ Top of available RAM

63098 61285 BASIC line number being executed

63100+ 61287+ Starting address of current BASIC program

63104 61291 End of BASIC statement marker

63105 61292 Multi-purpose buffer; a tokenized BASIC line starts here
63109 61296 General=purpose Buffer holds line from INPUT routines
63368 61555 Holds wvalue of POS

63369+15 61556+15 Fl definition, table 1
63385+15 61572415 F2 definition, table 1
63401+15 61588+15 F3 definition, table 1
63417+15 61604+15 F4 definition, table 1

63433+15 61620+15 F5 definition, table 1

63449+15 61636+15 F6 definition, table 1
63465+15 61652415 F7 definition, table 1
63481+15 61668+15 F8 definition, table 1

- 72 =

63498+15
63514+15
63530415
63546+15
63562+15
63578+15
63594+15
63610+15
63785
63786
63787
63789
63790

63791

63792
63793
63795
63796
63797
63798
63799
63800
63805+5
63812
63813+
63815

63816+

61685+15
61701+15
61717+15
61733+15
61749+15
61765+15
61781+15
61797+15
61977
61978
61979
61681
61682

61983

61984

61985

62004

62005+

62007

62008+

Fl definition, table 2

F2 definition, table 2

F3 definition, table 2

F4 definition, table 2

F5 definition, table 2

F6 definition, table 2

F7 definition, table 2

F8 definition, table 2

Day of the month, second digit; integer, 0-9
Day of the month, first digit; integer, 0-3
Day of the week; integer, l=Mon, 7=Sun
Year, second digit; integer, 0-=9

Year, first digit; integer, 0=9

Cursor timer, counts down from 125 to 1 continuously
In the 200, counter runs from 150 down to 1

Slower counter, counts down from 12 to 1 continuously
Power down counter

Seconds, second digit, 0-9

Seconds, first digit, 0=5

Minutes, second digit, 0-9

Minutes, first digit, 0-=5

Hours, second digit, 0-9

Hours, first digit, 0-2

ON TIMES time, in reversed order, 6 digits
ON COM GOSUB status flag

ON COM GOSUB address

ON TIMES$ GOSUB status flag

ON TIMES GOSUB address

SR

63818 62010 ON KEYl GOSUB status flag
63819+ 62011+ ON KEY1 GOSUB address
63821 62013 ON KEY2 GOSUB status flag
63822+ 62014+ ON KEY2 GOSUB address
63824 62016 ON KEY3 GOSUB status flag
63825+ 62017+ ON KEY3 GOSUB address
63827 62019 ON KEY4 GOSUB status flag
63828+ 62020+ ON KEY4 GOSUB address
63830 62022 ON KEY5 GOSUB status flag
63831+ 62023+ ON KEY5 GOSUB address
63833 62025 ON KEY6 GOSUB status flag
63834+ 62026+ ON KEY6 GOSUB address
63836 62028 ON KEY7 GOSUB status flag
63837+ 62029+ ON KEY7 GOSUB address
63839 62031 ON KEY8 GOSUB status flag

63840+ 62032+ ON KEY8 GOSUB address

63842 62034 * Start of RAM Directory; 11 byte slots
The first byte in the slot is the file attribute byte;
the second and third byte is the file’s starting
location in RAM, bytes 3=1l1 are the filename and type

63842 62034 BASIC

63853 62045 TEXT

63864 62056 TELCOM

63875 62067 ADDRSS

63886 62078 SCHEDL

63897 62100 Unsaved BASIC program buffer

63908 62111 Paste Buffer

63919 62122 BASIC’s Edit buffer

63930 62133 User‘s file #1

63941 62144 User’s file #2

- 74 =

l 63952 62155 User’s file #3
63963 62166 User’s file #4
63974 62177 User’s file #5
' 63985 62188 User’s file #6
63996 62199 User‘s file #7
64007 62210 User’s file #8
l 64018 62221 User’s file #9
654029 62232 User’s file #10
64040 62243 User’s file #11
' 64051 62254 User’s file #12
64062 62265 User’s file #13
64073 62276 User’s file #14
64084 62287 User’s file #15
l 64095 62298 User‘s file #16
64106 62309 User’s file #17
64117 62320 User’s file #18
l 64128 62331 User’s file #19
62342 User’s file #20
62353 User’s file #21
62364 User’s file #22
I 62375 User’s file #23
62386 User’s file #24
62397 User’s file #25
l 62408 User’s file #26
62419 User‘s file #27
62430 User’s file #28
l 62441 User’s file #29
62452 User’s file #30
62463 User’s file #31
62474 User‘s file #32
l 62485 User’s file #33
62496 User’s file #34
62507 User‘s file #35
l 62518 User’s file #36
62529 User’s file #37
62540 User’s file #38
l 62551 User’s file #39
62562 User’s file #40
62573 User‘s file #41
62584 User’s file #42
l 62595 User’s file #43
62606 User’s file #44
62617 User’s file #45
l 62628 User’s file #46
64139 62639 End of Directory flag
I 63898 62651 Directory address of current BASIC program
64173 61194 Label line flag; O=disable, l=enable
l 64175+7 62685+7 IPL Program name String
l 64190 62700 Temporary storage of Stack pointer address
64192+ 62702+ Lowest address available in RAM
I - 75 =

64201
64206+
64208
64218
64357
64359+
64377+25
64404+
64409+

64411+

64415+
64417+
64419+
64421+
64423
64424
64426+
64428+
64430+
64432+
64434+
64436+
64438+
64536
64617
64642
64659+8

64668+8

62711
62715+
62717

62727+95

63002+

63058+
63060+

63062+

63064+

63069+

63073+

63075+

63077+

63079+

63081+

63285

63302+8

63311+8

offset into jump table

"Top" address is stored here after a LOADM
Length of CLOAD/CSAVEd program

Start of interrupt vector table; 2 byte steps
Basic variable type

Pointer to file buffers

26 bytes, variable type for each letter of the alphabet
Line number of active data statement

Location of BASIC variable for assignment (LET=)
Pointer to start of current BASIC statement
BASIC line number where last error occurred

Most recently listedor entered line number
Address where error occurred

Address of ON ERROR GOTO line

Error status flag

End of BASIC expression

Line number where a break occurred

Location after error

Pointer to start of .DO file area

Pointer to start of .CO files

Pointer to start of variable storage

Pointer to start of array table

Pointer to first free byte in RAM

Floating point arithmetic accumulators; to 64543
Floating point arithmetic accumulators; to 64624
MAXFILES value

Name of current BASIC program; null at end

Name of last file found or loaded from tape; null at end

- 76 -

64704 63408 Start of Previous Screen buffer

64904+7 Start of DATE$ and TIMES strings used by Menu program
temporarily stored in PREV screen buffer

65023 64047 End of Previous screen buffer

65024 64048 Start of LCD image buffer

65343 64687 End of LCD image buffer

65346 64754 Xon/Xoff flag; O=off, l=on

65348 64756 Sound on/off flag; O=on, 175=off

65349 64757 Cassette on/off flag

65350+63 RS-232 buffer, 64 bytes

65414 64757 Number of unread bytes in buffer

65416+ Pointer to buffer position

65431 Binary indicator of certain keys being pressed

65432 Pressing a function key sets the corresponding bit here

65442 Binary indicator of certain keys being pressed

65450 64798 Number of characters waiting in the keyboard buffer

65451+63 64799+63 Keyboard buffer holds 32 characters and 32 function key
markers in alternate bytes

Undocumented, but equivalent addresses:

100/102 200 100/102 200 100/102 200
63062 61239 64634 63277 64658 63301
63090 61275 64652 63295 64679 63322
63099 61286 64264 62775 64929 63433
63794 61986 64266 62777 64981 63701
64194 62704 64300 62813 64983 63537
64195 62705 64306 62819 65006 63560
64198 62708 64308 62821 65007 63561
64210 62719 64310 62823 65423 64771
64216 62725 64312 62825 65433 64781
64220 62729 64396 63039 65448 64796
64240 62751 64413 63056 65523 65185
64244 62755 64440 63083
64256 62767 64488 63131

- 77 =

CHAPTER 26

Removing ROM names from the Menu

This chapter provides the necessary POKEs to remove unwanted ROM Program
names from the computer’s main menu.

Copyright 1989 Tony B. Anderson
All Rights Reserved

It is often useful to remove unused ROM Program names from the computer’s main

menu. An example might be if you don’t use specific programs, and just want to
unclutter the menu. This subject has been touched on before in this book, but

this chapter gives the specifics.

It is not necessary to list the RAM directory in order to remove specific ROM
program names from the menu, but it would be necessary if you want to hide a
BASTIC program or file by making it invisible. In that case, use one of the
RAMDIR programs from chapter 17, whichever is appropriate for your machine, to
find the necessary address to poke.

To make program names, such as TEXT, TELCOM, ADDRSS, SCHEDL or MSPLAN invisible
(1f you don‘t use them), use the following pokes in direct mode in BASIC. It
is not recommended that you remove the BASIC program name from the menu; if you
have a lockup problem, it may not be possible to enter BASIC to recover control
if it is not available on the menu, particularly in the 200, which does not
allow direct typed input at the main menu to access files or programs.

For the Model 100/102:

POKE 63853,184 (deletes TEXT name)

POKE 63864,184 (deletes TELCOM name)
POKE 63875,184 (deletes ADDRSS name)
POKE 63886,184 (deletes SCHEDL name)

To recover use of any of the above programs, previously made invisible, just
use the appropriate poke listed below in BASIC’ s direct mode:

POKE 63853,176 (recovers TEXT name)

POKE 63864,176 (recovers TELCOM name)
POKE 63875,176 (recovers ADDRSS name)
POKE 63886,176 (recovers SCHEDL name)

- 78 -

For the Tandy 200:

POKE
POKE
POKE
POKE
POKE

62045, 184
62056, 184
62067, 184
62078, 184
62089, 248

(deletes
(deletes
(deletes
(deletes
(deletes

TEXT name)

TELCOM name)
ADDRSS name)
SCHEDL name)
MSPLAN name)

To recover use of any of the above programs, previously made invisible, use
the appropriate command listed below in BASIC’s direct mode:

POKE
POKE
POKE
POKE
POKE

62045,176
62056,176
62067,176
62078,176
62089, 240

(recovers
(recovers
(recovers
(recovers
(recovers

Making individual files or

TEXT name)

TELCOM name)
ADDRSS name)
SCHEDL name)
MSPLAN name)

programs invisible: Refer to Chapter 17.

- 79 =

CHAPTER 27

Lots of Useful CALL’s

List of documented calls for Model 100 and Tandy 200, which may be used
in BASIC, or in function key techniques.

Copyright 1986 Tony B. Anderson
All Rights Reserved

The CALL statement is a very powerful tool, which can be used in either BASIC
or Assembly Language programs, and works basically the same way in either.
Essentially, it gives the BASIC programmer access to many of the built-in ROM
routines, many of the same routines as used by machine-language programmers.
The benefit of using a CALL to a ROM routine is the increase in speed caused

by bypassing going through the BASIC interpreter, which has to interpret your
statements before calling the same routines. The way a CALL works, is that it
transfers control to the address CALLed, and somewhere at the end of the CALLed
routine, presumably there is a RETurn, which will return control to the program
or the keyboard, at the next executable command. If you were waiting for a key
press before you issued the CALL, you will be waiting for a keypress again,
after returning. If your CALL was an executable statement in a BASIC program,
when you return, the program goes on to the next executable statement in the
program.

The following function calls have been verified, and there are many others
which are useful primarily in specific applications programs. These are some
of the common ones that you can use right away in your own BASIC programs.
Many of these calls can be combined with the technique shown in Chapter 22 to
perform the function from a function key press in TELCOM. They can also be
put on a function key in BASIC, to perform specific functions desired by the
user.

In BASIC programs, use the form: CALL nnnn, where "nnnn" is the number listed
in the chart.

To put a CALL statement on a function key in BASIC, select the key you want to

use, and type the key defining statement directly as follows (assume you want
to put CALL 36 on function key 5 to turn off the computer with a single key=-
press). Type:

Key 5,"CALL36"+CHR$(13) and press the ENTER key.
The word "CALL" will appear above the [5] marks at the bottom of the screen
when you press the ENTER key, indicating the key has been defined. You can use

both upper and lower case letters in your definition.

- 80 -

In some cases, you might want the key to do the CALL, but call it something
else on the screen. An example might be if you want a keypress to turn on the
cassette recorder with a MOTORON command. In that case, "MOTORON" is too long
to appear on the label line (only four letters can be displayed, and "MOTO"
doesn’t look too neat). In this case, you can put one thing on the display
line, and hide the command out of sight. The technique to put "Cas" on the
label line, for example, and turn on the cassette motor, would he:

Rey 5,"Cas"+CHR$(24)+"MOTORON"+CHRS(13)

Note the CHR$(24) in there... when you press the function key, the definition
is dumped into the keyboard buffer. As the macro starts to be placed in the
keyboard buffer, CHR$(24), a CTRL-X, erases the characters back to the begin-
ning of the line, so that MOTORON and a carriage return is all that gets into
the buffer. You have to be careful with this technique, because the function
key definition can only hold 15 actual characters. '"Cas" is 3, CHR$(24) is 1S
"MOTORON" is 7, and CHR$(13) is 1; a total of 12 characters.

The "*n" mark after some functions in the chart below, refers to the Notes at
the bottom of the chart. Some functions are not really useful in TELCOM, but
might be usfull in other situations.

Function 100/102 200

Send Char to Printer:*3

Turn Power Off: 36 5449
Cold Start: 32231 33820
Warm Start (Reset) 0 0 !
Reverse Video: *1 17001 20360
Normal Video: *1 17006 20365
Scroll Off: *1 16959 20318
Seroll On: *1 16964 20323
BEEP 16937 20293
List Files: 7994 10794
List Free RAM: 32428 39677
LLIST: 4411

LCOPY: 7774 10566
Clear Screen: 16945 20301
Jump to Menu: 22423 26532
Jump to BASIC: 27721 33679
Jump to TELCOM: 20806 24573
Jump to TERM: 21589 25464
Jump to ADDRSS: 23400 28391
Jump to SCHEDL: 23407 28397
Jump to TEXT: 24046 29085
Connect phone line: 21200 25040
Disconnect phone line: 21179 25018
Dial a digit: *2 21514,n 25386,n
Send Xoff (7S) 28190 34327
Send Xon (7Q) 28171 34312
Motor On: *1 5288 5568
Motor Off: *1 5290 5570
Do Nothing (Return): 32755 40104

27967,n 23060,n

- 81 -

_

* Notes:

1. Recommended for Model 100 only because of the need to have one key to turn
the function on (F6), and the second (F7) to turn it off.

2. The digit to be dialed is passed to the dialing routine by the statement.

3. The ascii value of the character to be printed is passed by the statement.

Miscellany:

In the 100/102, CALL 24367 causes the computer to wait for the space bar to be

pressed before continuing, with no indication of why it’s waiting. 1In the
Tandy 200, it‘s CALL 29413.

For additional functions, refer to the ROM map which follows.

- 82 -

CHAPTER 28

Useful ROM Addresses

This chapter lists many of the ROM routines that are documented. Many

are useful only to machine language programmers. Many others have been
left out of this list because of their relative obscurity, and there was
simply no point in including them, because it is easier to do what you want
to do in BASIC rather than trying to do it with CALLs to ROM routines.

Notes: '"message text'" indicates a group of actual characters that are used in
screen messages. Some equivalent addresses are indicated, which are useful

for conversions of programs, but not identified as to function because they are
not documented.

100/102 200 Function

0 Warm reset, RST 0
1 ID byte; 51 = 100, 167 = 102, 171 = 200
3 *MENU® message text
7 Null character, CHR$(0)
8 RST 1
30 30 Print a space
32 32 Print the character in the A register
128 128 Table of keywords used in BASIC
428 428
796 796 BASIC error code table
1002 1045 “Error’ message text
1009 1053 *in’ message text
1014 1057 *Ok’ message text
1019 1062 ‘Break’ message text
1094 1137 Syntax error routines
1097 1140 divide by 0 error
1109 1152 OV error
1112 1155 mo error
1117 1160 error message based on content of E register
1147 1190 Return error
1245 Display error message
1281 1324
1282 1325
1520 1563 Builds BASIC line pointers
1523 1566
1576 1619 Search for a BASIC line number
1606 1649 Tokenize BASIC text
2267 2310 Function Call error
2283 2326 Get Value of line to jump to on GOTO, GOSUB, RUN
2381 2424 Undefined Line error

- 83 =

~Nw = 0O

3188
3441
4072
4073
4165
4335
4398
4514
4811
5029
5045
5083
5169
5232
5268
5288
5290
5296
5313
5342
5354
6118
6148
6415
6447
6498
6558
6965
6980
7089
7774
7963
7994
8126
8153
8215
8329
8335
8352
8367
8405
8420
8447
8500
8518
8698
8710
8719
8761
8780
9030
9205

9498
9533

9538

3231
3529
4115
4116
4207
4377
4440
4556
4855

5086
5154
5449
5520
5548
5568
5570
5576
5593
5621
5633
6429
6152
6782
6814
6853
6913
7353
7368
9879
10566
10763
10794
10932
10958
11020
11174
11180
11197
11212
11250
11273
11292
11344
11362
11587
11635
11644
11692
11711
12467
12645

12938
12962

12967

*?Redo from start’ message text

‘Extra ignored’ message text

Upper case conversion of character pointed to by HL
Upper case conversion of character in A register

Convert ascii value to integer

Prints from buffer terminated with 0, pointed to by HL
Get character from the keyboard routine
Toggles the label line

Power off and resume
Send character to printer; expand tabs to spaces

Turn on cassette motor relay

Turn off cassette motor relay

Get character from cassette and checksum
Send character to cassette and checksum

Read system time into buffer
Read system date into buffer
Read system day into buffer

Reset power down counter
Dump screen content to printer (except graphics)

Print Files routine
Kill a .DO file

Search directory for next valid file entry
Search directory for an empty file slot

Get Length of a filename
Open a TEXT file
Make a TEXT file

Insert entry into directory

Moves B bytes from HL to DE, increasing

- 84 =

R S S S SR SR B

9581

9636

9643

9685

9691

9697

9984

9989
10161
11997
12006
13392
13399
13417
13426
14072
14117
14206
14804
16162
16175
16625
16930
16937
16941
16945
16945
16954
16959
16964
16969
16974
16989
17001
17006
17008
17015
17020
17034
17061
17064
17082
17875
17982
17988
18130
18678
19268
19285
19360
19384
19467
19585
19647
19730

13010
13065
13072
13114
13120
13126
13412
13419
13591
15445

16801
16808
16826

17484
17529
17618
18187
19517
19530
19980
20286
20293
20297
20301
20301
20313
20318
20323
20328
20333
20348
20360
20365
20367
20374
20379
20393
20420
20423
20393
21499
21744
21750
21895
22442
23045
23060

23159
23242
23360
23422
23505

Beep and jump to main menu

*Top:’ message text

‘End:” message text

“Exe:’ message text

‘Found:’ message text

*Skip:’ message text

Prints message pointed to by HL

Moves C bytes from HL to DE, decreasing

Move B bytes from DE to HL, increasing
Move B bytes from DE to HL, decreasing

Prints the value in HL

Check for upper=-case character in A
Prints Carriage Return and Line Feed.
BEEP

Home Cursor

Clear screen and Home Cursor

Lock bottom screen line

Unlock bottom line

Scroll lock

Scroll unlock

Cursor on

Cursor off

Erase from cursor to end of current line
Reverse video on

Reverse video off

Print CHRS$(27) plus the character in A

‘Move cursor to bottom left corner of screen

Position cursor
Clear label line

Set and display function keys
Display function keys (label line)
Erase function key display (label off)

Display ? mark and get a line from keyboard
No prompt; get a line from keyboard

Print character in A
Send character in A to printer, expand tabs to spaces
Send carriage return to printer

Format filename and check validity

- 85 =

19768
19801
20002
20007
20090
20106
20234
20567
20806
20928
21060
21179
21220
21264
21274
21293
21514
21589
22213
22361
22376
22385
22396
22406
22417
22423
22710
22723
22747
22754
22763
22896
22985
23013
23058
23128
23138
23161
23164
23198
23206
23209
23211
23254
23267
23268
23273
23322
23400
23407
23450
23615
23661
23668
23726

23543
23576
23777
23782
23862
23878
24001
24334
24573
24695
24898
25018
25063
25102
25112
25131
25386
25464
26210
26470
26485
26494
26505
26515
26526
26532
27215
27228
27244
27251
27260
27825
27985
28013
28055
28150
28166
28189
28192
28226
28234
28239
28239
28278
28300
28301
28306
26693
28391
28397

28738

28790
28797

28855

Fill block of memory with binary zeros
File not found error

TELCOM main entry point

Stat routine

“Calling’ message text
Disconnect modem from phone line
Connect modem to phone line

2 second time delay

1/2 second time delay

Dial a phone number

Dial a single digit

TERM entry point

“*aborted” message text
*‘No file” message text
‘Disconnect’ message text
prints message

Main Menu entry

Prints time and date at top of screen

Prints contents of buffer at HL, until a null is found
Move a block of memory

Clear function key definition table

Set function key definitions

Display function key table

Search directory for a specified file

find storage location address of specified file

*JanFebMarAprMayJunJulAugSepOctNovDec’ message text

ADDRSS main entry point
SCHEDL main entry point
Prints ‘Not found press space bar for menu’

. = 86 =

23851
23891
23901
23920

23985
23996
24005
24046
24356
24367
24395
24753
25446
25456
25475
27437
27489
27501
27551
27611
27622
27721
27795
27804
27815
27862
27967
28013
28030
28171
28190
28210
28218
28363
28399
28869
28962
29124
29171
29172
29181
29250
29296
29315
29343
29361
29592
29756
30300
30326
32428
32555
32664
32755

28979
29003
29013

29020
29035
29044
29085
29402
29413
29441
29842
30535
30545
30564
33384
33436
33448
33498
33558
33569
33679
33747
33756
33773
33820
33993
34056
34073
34312
34327
34371
34383
34741
34634
35195
35288
35461
35508
35509
35518
35587
35633
35661
35689
35707
36068
36198
36768
36809
39677
39905
40014
40104

—

Prints date and time at top of screen, updates it until any
key is pressed

TEXT main entry point

Prompt for press space bar

*‘Text ill-formed’ message text

‘Press space bar for TEXT’ message text
*Memory full’ message text

Moves BC bytes from HL to DE, increasing

Moves BC bytes from HL to DE, decreasing

BASIC main entry point

Copy function key table 1 to table 2

Copy function key table 2 to table 1; Restores function keys

Cold start reset

Send character to line printer

Check RS232 buffer for characters

Get next character from RS232 buffer

Send Xon character to COM port

Send Xoff character to COM port

Send character to RS5232 port, honor Xon/Xoff protocol

Detect carrier signal

Puts ascii value of keypress in A, similar to INKEY$S

Check for break characters

Turn on RST 7.5 Interrupt

Turn off and rearm RST 7.5 Interrupt
clicks the speagker

Prints number of free bytes in RAM

‘bytes free’ message text

SRg =

Chapter 29

Resources

This chapter lists books and magazines that are dedicated to the care,
feeding, and operation of the Model 100 family of computers, plus other

information resources. Many books are no longer in print, and are included
here for reference and research purposes only.

Copyright 1984, 1985, 1987, 1989, Tony B. Anderson
All rights Reserved

MAGAZINES:

Portable 100
P.0O.Box 428
Peterborough NH 03458

100% dedicated to coverage of the Tandy portable and laptop computers. Heavy on
Model 100/102 and 200. Occasional coverage on 600 and 1400. Available only by
subscription. Eleven issues per year, $24.97 for 12 issues. Primary source of
Model 100 support; highly recommended Back issues are available.

PCM
P.0.Box 209
Prospect KY 40059

During the period from 1983 to 1988, PCM had several articles, games, or
programs in each issue. Beginning in 1988 this dwindled to one a month, then
occasional articles. Back issues are a good source of material.

80 micro
P.0. Box 981
Farmingdale NY 11737

TRS-80 oriented magazine includes one or more articles for the M100 each month
during the 1983 period until they discontinued publishing.

BOOKS :

TRS-80 Model 100 Portable Computer; aka THE TRS-80 Model 100 Owners Manual is
still available from Radio Shack on special order, or from Tandy“s National
Parts Center hotline, (800) 342-2425. No catalog number, ask for it by name.
$18.95. Similar manuals are available for the Tandy 102 and 200 computers.

- 88 -

TRS-80 Model 100 Technical Reference Manual; Radio Shack #26-3810. Available
from Tandy/Radio Shack as above. $9.95. Similar manuals are available for the
Tandy 102 and 200 computers.

The TRS-80 Model 100 Service Manual, available from Tandy /Radio Shack as above.

Similar manuals are available for the Tandy 102 and 200 computers, the Disk/
Video Interface (D/VI), the Tandy Portable Disk Drives, etc-

The Model 100 Book, A Guide to Portable Computing; from Osborne/McGraw- Hill,

by Jonathan Erickson & Robert J. Sayre; Walden Books; 310 pgss soft cover;
§17.95

The Radio Shack Notebook Computer; from Sybex by Orson Fellogg; 118 pgs, soft
cover; $9.95

The TRS-80 Model 100 Portable Computer; from Tandy/Radio Shack, by David A.
Lien; 555 pages, soft cover; very good beginner’s book, $14.95

The Tandy 200 Portable Computer; from Tandy/Radio Shack, by David A. Lien; 595
pages, soft cover; very good beginner’s book, $19.95

Five book set: Introducing the TRS=80 Model 100; from The Waite Group, by Diane
Burns and S. Venit.; 180 pgs, soft cover, $15.95

Mastering BASIC on the TRS-80 Model 100; from The Waite Group, by Bernd
Enders; 340 pgs, soft cover; $19.95

Practical Finance on the TRS-80 Model 100; from The Waite Group, by S. Venit
and Diane Burns; 166 pgs, soft cover; $15.95

Games and Utilities for the TRS=-80 Model 100; from The Waite Group, by Ron
Karr, Steven Olsen and Robert Lafore; 198 pgs, soft cover; $16.95

Hidden Powers of the TRS-80 Model 100; from The Waite Group, by Christopher
L. Morgan; 244 pgs, soft cover; one of the best technical books. $19.95

The above five books are available seperately, although they constitute a
"set'". Although they plainly state "The Waite Group" on the cover, they are
listed in the Books in Print catalog as "A Plume/Waite Book", and as such,
are catalogged under "Plume" instead of "Waite".

Portable Computing with the Model 100; Radio Shack #26=3820; from Radio Shack
by George Stewart; 171 pgs, soft cover book with program cassette; $14.95.

The Model 100 Companion, Business and Entertainment Programs for Portable
Computing; The Editors of Osborne McGraw/Hill; 166 pgs, soft cover; $15.95.

The TRS-80 Model 100 and NEC PC-8201 Idea Book; Creative Computing Press by
David H. Ahl; 141 pgs, soft cover; $8.95.

TRS5-80 Model 100 - A User’s Guide; TAB Books, by Joseph Coleman; 152 pgs, soft
cover; $15.50.

The Simon & Schuster Guide to the TRS-80 Model 100; from Simon and Schuster by
Danny Goodman; 221 pgs, soft cover; $9.95.

- 89 -

Financial Decision Making with your TRS-80 Model 100, including 18 Programs;
from TAB Books by Leslie Sparks; 144 pgs, paperback; $9.95

Getting What You Want from the TRS5-80 Model 100: BASIC Programming for Business;
from Harper-Rowe by E. Paul Cone; 200 pages, paperback; $14.95

The TRS-80 Model 100 User’s Guide; from Wiley Press; 160 pgs, paperback; $16.95

Sixty Business Applications Programs for the TRS-80 Model 100 Computer; from
Scott, by Terry Kepner & Mark Robinson; paperback; $17.95 #*

TRS-80 Model 100: The Micro Executive Workstation; from Reston, by Kenniston
Lord; paperback; $16.95

The TRS-80 Model 100 Computer, The Micro Executive Workstation; from Reston
Publishing Co, by Kenniston W. Lord; 258 pgs, soft cover; $15.95

Guide to TRS-80 Model 100 Utility Programs; from Wiley Press by Ronald Konkel;
paperback; $15.95

How to Use the TRS-80 Model 100 Portable Computer; from Alfred Publishing by
Robert K. Louden; 64 pgs, paperback; $2.95

Twenty=Five Games for your TRS5=80 Model 100; from TAB Books by David Busch; 160
pgs, paperback; $9.95

Things to do with your TRS-80 Model 100 Computer; by Jerry Willis, Merl Miller
and Cleborne Maddux; paperback; $3.95

Forty=Four Programs for the TRS-80 Model 100 Portable Computer; from ARCsoft,
by Jim Coles; 96 pags; $8.95

TRS-80 Model 100 Subroutine Cookbook; from Brady Communications Co., by David
Busch; 166 pgs, soft cover; $12.95

Computer of the Century: Radio Shack Model 100; from DATAMOST by William Sanders;
paperback; $4.95

Executive Recreations for the TRS-80 Model 100; from Wiley Press by Ed Yasaki,
Bob Albrecht and Karl Albrecht; 160 pgs, paperback; $14.95

User Guide & Applications for the TRS-80 Model 100 Portable Computer; from
Scott, Foresman & Co., by Steven A. Schwartz; 124 pgs, paperback; $17.95; with
Cassette, $25.00. *

Inside the Model 100; from Weber Systems, by Carl Oppedahl; 334 pgs, soft cover,
one of the best, includes info on assembly language and advanced BASIC program=-

ming techniques. $21.95 *

Portable Programs: Games & Utilities for the TRS-80 Model 100; by R. Carr, S.
Olson and R. Lafore; $9.95

Portable BASIC: BASIC Programming Guide for the TRS=-80 Model 100; by Bernd
Enders === announced by publisher, never seen.

- 90 -

Portable Tutor: User’s Guide to the TRS=80 Model 100; by Diane Burns ——-
announced by publisher, never seen.

Computing; from Osborne, McGraw/Hill, by the Editors of...; 150 pgs; $15.95

The Best of the Model 100 Forum; published by Compuserve Information Service,
Special Interest Group/Forum: from CIS,
may be ordered on~line; 61 pgs, $9.95

Book & Cassette: TRS-80 Model 100 Basic Language Lab: Radio Shack Catalog #
26-3821; $29.95

Two Radio Shack Service Manuals for the M100: Catalog numbers: 26=3801 and
26-3802. Order from National Parts, price not known.

How to Do It on the TRS-80 by William J. Barden; additional details unknown,
$29.95

Moonlighting with your Personal Computer from World Almanac Publications, by
Robert Waxman; 159 pgs, soft cover; $7.95

Programming Tips, Peeks and Pokes For the Tandy Portable Computers, self-
published by Tony B. Anderson, $14.95

The Model 100 Program Book, by Terry Kepner, publisher of Portable 100 magazine,
§14.95 =

The Secrets of ROM Revealed; King Computer Services, by Mo Budlong. About 60
pages, soft cover, $39.95. An IBM/PC software support disk is available for an
additonal $10.00.

Not directly related to the Model 100 family, but directly applicable, the
beginners book on assembly language, Introduction to 8080/8085 Assembly Language
Programming, A Self-teaching Guide, published by John Wiley and Sons, by Judi
Fernandez and Ruth Ashley. 303 pgs, soft bound, $12.95.

* The books so marked are currently still available (late 1989) from Granite
Street Portables, Box 651, Peterborough NH 03458.

PROGRAM COLLECTIONS:

P100-To-Go; A monthly collections of programs published in Portable 100 Magazine,
on disk. Formats supported include the Tandy portable disk drive and the Holmes
Chipmunk disk drive. P100-To-Go, Box 428,)Peterborough NH 03458. $9.95 each,
or a six=-month subscription for $47.70.

Public Domain Programs on disk, a different selection each month. Available on
disk for the Tandy Portable Disk Drive, $7.00 per disk. Thomas Quindry, 6237
Windward Drive, Burke VA 22015. Mr. Quindry also writes a monthly article in
Portable 100 magazine.

- 91 -

Programs for the Tandy 200 from Paul Globman, 9406 NW 48th Street, Sunrise FL
33351. Paul writes many innovative programs for the Tandy 200, and a monthly
column in Portable 100 magazine.

Over 200 Programs and Information files for the 100/102/200 and 600. Complete
catalog on disk, $5.00; formats available include Tandy portable disk drive,
Holmes Chipmunk disk drive, MS=DOS 5.25 inch disk, and cassette. Additional
services include custom ROM burning, hardware modifications, dual disk drive
interfaces, modem cables, and other unique items, including EPROM-based software.
Available from Tony Anderson, Post Office Box 60925, Reno NV 89506.

ONLINE RESOURCES:

CompuServe, The Model 100 Forum, available to CompuServe Subscribers. Almost
4,000 programs and files for the Tandy Portable Computers. An active message
board where you can get technical help, advice and information 24 hours a day,
often within hours, from a widely experienced group of users who provide all
levels of support. Some of the best, currently active programmers frequent
this forum. There is a signup and free time kit in each modem cable package
sold by Tandy/Radio Shack, and you can also signup through an 800 phone number
provided by CompuServe.

GEnie Information Service, The Laptop roundtable. This forum supports all
laptops, and as such, Model 100/102/200 users might find it less interesting,
and less useful. You hear very little about activity on the GEnie service.

Club 100, a private membership BBS, which features one of the largest collection
of downloadable programs and information files in the country. A privately run
BBS, it has restricted access due to the number of available phone lines. It’s
a long-distance call from everywhere except its local dialing area. They have
recently (late 1989) been advertising program collections on disk through
Portable 100 magazine. Based in the San Francisco area, call (415) 932-8856

for information and logon instructions. The club holds frequent membership
meetings which are open to the public. Club 100, Box 23438, Pleasant Hill CA
94523.

- 92 -

Chapter 30

Loading and Running Machine~Language Programs

This chapter provides basic information about HIMEM and MAXRAM, and how
they relate to loading and running machine (assembly) language programs.

Copyright 1989 Tony B. Anderson
All rights Reserved

New users of the Tandy portables are often confused about how to load machine
language programs, what HIMEM and MAXRAM mean, and what relationship they have
to loading and running the .CO program. This chapter started out as a response
to those questions from a new user on the CompuServe Model 100 Forum’s message
board.

HIMEM - MAXRAM - What they are, and how they relate to use of .CO programs in
the Tandy Portable Computers:

HIMEM is a movable partition which can be set to allow you to load and protect
a machine language program in a reserved area of RAM just below MAXRAM, in an
area between the HIMEM partition and MAXRAM. Normally, HIMEM = MAXRAM, but
using the CLEAR,N,X command, you can move the HIMEM pointer to some address
below MAXRAM, "X", then load a machine language program between HIMEM and
MAXRAM, and the operating system will not overwrite the program by storing
variables, the file buffers, or the stack pointer in that area. Such things
are normally stored just under the HIMEM address. The "N" figure in the above
CLEAR statement specifies a number of bytes which should be reserved for
variable storage; usually it“s 256, but it could be more, or less, depending on
what you want.

MAXRAM is a partition that separates RAM space available to the user from the
reserved area of RAM that is used by the computer’s operating system - an area
that stores flags, buffers, pointers, the file directory, and other information
needed by the operating system. Machine language programs - .CO programs - are
loaded and execute just under MAXRAM.

You can determine what your current settings are by going into BASIC and typing
PRINT HIMEM;MAXRAM
In order to load a machine language program, designated with the filename

extension ".CO", first you go into BASIC and test to see if HIMEM = MAXRAM. Use
the above command, PRINT HIMEM;MAXRAM and press the ENTER key.

- 93 -

If the two addresses are different, then you clear out any existing machine
language program with the command CLEAR 256,MAYRAM. That resets the HIMEM
partition back to it’s default value, in effect unloading any machine language

program that was already in that area. Then you attempt to load the .CO program

you want to run with the command LOADM'"(filename)". I say "attempt', because
the program will not load because the HIMEM partition has not yet been set.

BASIC will return three addresses, "Top", "End", and "Exe". The display might
look like this:

Top: 60905
End: 61103
Exe: 60920
? OM error

The "error" indicates the program didn"t load. It might be a different type
of error - no matter, it means the program didn“t load. TIf it did, you’d get
"Ok" on the next line below the Exe address.

"Top" is the loading address of the program. "End" is where the program ends.
"Exe" is usually the "executing" address, the place you enter when you run the
program. Exe is often the same as Top. Note what the "Top" address is and
ignore the others, they aren’t of interest to you at this point.

Now type CLEAR 256,"top", putting the actual top address where I indicated
"top". A typical clear might be CLEAR 256,58000, if 58000 was the Top address
indicated above.

You can now LOADM the .CO program again, and it will load properly. You can
return to the menu, move the cursor over the .CO filename and press ENTER to
run the program, or you can type RUNM"(filename)", which will load and run the
program automatically.

HIMEM will remain where you put it, and the machine language program should
remain loaded for further use until you set HIMEM to something else, load
another program, or unless it gets corrupted by some other program. Depends

on how the .CO program was written, and what other programs may do to the HIMEM
pointer, or what may be loaded into the reserved area, or what might be poked
into the reserved area. It is possible, although not suggested, that several
different machine language programs might run in the same area, each one
overwriting the previous one. This could lead to problems, so is not advised
unless you really know what you’re doing.

Machine language programs which are designed to run in the computers alternate
screen buffer do not need to have an area reserved for them, and you do not
have to set HIMEM. Once such programs are on your menu as a .CO program, all
you have to do is move the cursor over the filename and press the ENTER key.
They can also be LOADMed from BASIC, and run with a call to the "Exe" address,
or they can be RUNMed from BASIC. Some of these programs can be used as
subroutines from other programs, check the documentation or check with the
author for information on those applications.

For additional information, refer to the Tandy BASIC Reference Manual which
came with your computer. It“s in the form of a dictionary, more or less, and
you can look up the words you want more information on, such as HIMEM, MAXRAM,
LOADM, RUNM, CLEAR, etc.

- 94 =

Chapter 31

CASSETTE USE

This chapter deals with use of cassette recorders for data storage,
explores some of the problems, provides some insights and tips, and
recommends upgrading to a disk drive.

Copyright 1989 Tony B. Anderson
All rights Reserved

Use of a Cassette for data storage, or for distribution of programs has always
presented problems, from the earliest days of personal computers. They are
unreliable, temperamental, and often can not be exchanged from one user to
another due to differences in the machines used to record, and those used to
playback the data tapes.

Beginners often think that data storage on standard cassettes is a routine,
money=saving method of saving programs and files for personal use, and attempt
to save money by using an existing cassette recorder that they may currently
have available. Frequently, after trying to save and load files unsuccessfully
from the cassettes, they give up in frustration, and either sell the computer
or put it in storage, moving on to another computer that "works right" with
cassettes. == It’s not the computer, guys, it’s the cassette recorder!

Several manufacturers have attempted to optimize cassette machines for use as
data storage devices, but the basic problem remains, data is basically a square
wave signal, digital, and the cassette medium is basically an analog signal
device, used to store sine waves = audio signals, which are seldom optimized
for digital use. The major problem lies in setting useful recording and play-
back levels. Cassette recorders often feature automatic level control, which
makes recording of computer data signals very difficult, as the volume keeps
changing, going up and down, depending on input level. Then too, the computer
puts out line-level signals, and most cassette recorders are designed to accept
microphone~level signals on their input jacks. The input signal simply over=-
loads the recorder, recording a distorted signal that cannot be recovered.

For the Tandy portable computers, Tandy/Radio Shack sells two cassette machines
that are "optimized" for computer use, the CCR-8l and CCR-82. They are priced
at, or around $59.95, and are often available on sale at even lower prices.
Each machine has a fixed reference point for setting recording and playback
levels, and are signal-matched to what the computer is sending. They also do
not have that automatic recording level or automatic volume control problem.

If you are not using one of the Radio Shack cassette machines, the 81 or 82,
you may have '"temperamental" problems recovering the data from cassettes; some-
times it will work, sometimes it won“t. If you use another recorder, it is

- 95 -

very important that it have a remote start/stop feature, since the computer
needs to stop the dataflow from the tape every so often when loading files, and
also start and stop the tape when saving files. If you use one of the Radio
Shack models, there is a fixed playback volume level that is used to play the
data back into the computer. If you use some other machine, you may have to
experiment with volume level, tone, or dolby settings, as they are all inter-
related to some extent, in order to make it work. In any event, powering the
cassette recorder from AC may help, and going into BASIC and typing SOUND OFF
and pressing the ENTER key may also help by eliminating the annoying screeching
sound as the data or program is loaded.

Distributors of programs on cassette generally assume you know how to load
programs and files from cassette into your machine. If you’re new to cassette
use, here are some short instructions of how to do it.

Files on cassette may be in three forms, just like they can be in the computer.
They can be .BA files (BASIC programs), .DO files (Documents), or .CO files
(machine language programs). Information about the programs on a cassette will
generally be noted on the cassette label.

«BA files, programs, are loaded into BASIC. Connect the cassette player to

the computer using the standard cassette cable. 1Insert the cassette into the
player and press the PLAY button. The cassette should not start yet. Enter
BASIC, press the F2 button, and at the Load " prompt, type ‘CAS:” and press

the ENTER key. The tape should start now. BASIC will report ‘Found:’ and

give the name of the file it found. If it was not a program, instead of Found,
BASIC will report ‘Skip:” and tell you the name of the file it is skipping.
When a program is found, it is loaded into BASIC. It may take a few minutes,
cassettes are very slow, and that’s another reason they aren’t looked on with
any great favor. The cassette may start and stop several times during the
loading process. Once the file is loaded, the cassette will stop, and you will
get the ‘Ok” prompt. You can now press F3 to Save the file under the name you
gpecify. Once saved, it will appear on your computer Menu, and you can Run it
by moving the wide cursor over the program name and pressing the ENTER key.

BASIC programs can also be loaded with the direct command CLOAD"filename". If
no filename is specified, the first program on the tape will be loaded. You
can add ",R" to the end of the command to automatically run the loaded program
after it is loaded.

Machine Language programs, with a .CO extension, can be loaded with the CLOADM
command, which works much like the CLOAD command for BASIC programs.

«DO files (documents) are loaded into TEXT. To load files, setup the cassette
machine as before, insert the cassette and press the PLAY button. Then go into
TEXT and press F2. At the prompt ‘Load from:’ type ‘CAS:’ and press the ENTER
key. The cassette will start, and the first file that is found that is a .DO
file will be loaded into TEXT. It may take a few minutes to load, depending on
size. A 10K file may take up to four minutes. Be patient. While the file is
loading, nothing happens on your screen. When the file is completely loaded it
will suddenly appear and the ‘Load from:’ message at the bottom of the screen
will disappear.

If you are loading several .DO files, such as might be stored on tape as a
collection of data files, you can load each file into TEXT, and once the file

- 96 -

is displayed, you can press the Shift key and push the PRINT button at the same
time (called SHIFT-PRINT) to send a copy of the file to your printer. When you
press Shift-PRINT, you get a prompt on the bottom line of the screen for width.
You can type 80 for an 80 column printer, but unless you have an odd printer,
you can just press the ENTER key and the file will be printed in 80-column
format anyway, since that is the way most files are already formatted on the
tape. On the Tandy 200, you have more printing options with Shift-PRINT,
including some basic formatting capabilities.

Once you have a paper copy of the file, you can go into BASIC and kill the .DO
file with the command ‘KILL"filename.DO”, return to the menu by pressing F8,
go back into TEXT and load the next file from the cassette the same way. (In
the Tandy 200, you can kill the file directly at the main menu by pressing F5)
In TEXT, press F2, and type CAS: and press the ENTER key. The cassette will
load the next file from the tape. It is not necessary to know the file names
prior to loading them, using this method.

It sometimes happens that a cassette simply isn’t readable. It may be possible
to recover some, most, or all of the data on the tape by using a BASIC program
that opens a file on the cassette, and reads data from the tape line by line,
or character by character. There are also some data recovery utility programs
available, mainly on various BBS“s and services.

As a final word of advice, allow me to strongly urge you to upgrade to a disk
drive, and get away from cassette use. As handy as they are, cassettes just
aren’t up to reliable data storage. The Tandy/Radio Shack disk drive is a
viable upgrade, is often available at less than catalog price, either on sale
or by mail order; and is often half-price or less for used drives. Upgrading
to disk will change the way you use your computer, and will make it much more
productive. For one thing, you can keep programs and files on disk, and only
load those programs or files you will be using at any given time, keeping your
RAM space mostly empty, allowing more space for data files which may be used by
your programs. There are also programs available that will backup the entire
contents of RAM to disk, and DOS’s that allow you to read and write directly to
disk files from your own programs. You can save an entire bank of programs and
files to disk, and load another set, expanding the capabilities of your machine

as if you had a multi-bank machine. One disk will hold between three and six
entire banks worth of data and programs, so you can switch various work efforts
in and out of RAM easily. You could have one disk for business related files,
one for personal stuff, one for games, notes, research, or whatever. Working
with disk is so much easier, and you won“t have to fight with the machine to
make it work properly, like you do with cassettes. Additionally files can be
saved and loaded by name - you don“t have to wait for the cassette recorder to
find the file and load or save it.

A shirt-pocket full of disks can hold over a megabyte of programs and data...

anywhere up to 400 programs and files on five to ten disks. It’s well worth
making the change for only a couple hundred bucks.

- 97 -

ADDENDA

Production Notes:

This book was written, edited and produced entirely on a Tandy 200 computer,
with the exception of text formatting, and page numbering, which was done in a
PC. The manuscript copy was printed on a Qume daisy-wheel printer with an
Ascii-96 character typewheel.

Program disk:

A program disk, containing a copy of each program listed in the book is avail-
able for $5.00, postpaid. Each program is referenced by page number.

Disks are available in the following formats: 3.5 inch for the Tandy Portable
Disk drive (100K or 200K models), 3.5 inch Chipmunk disk, and MS=DOS 5.25 inch
disk. Order the Programming Tip Book disk, and specify which format you want.
Each disk contains the following programs or routines:

Page Disk Name Program Description
2 P2-1.BA Substring Pointers il
2 P2-2.BA Substring Pointers {2
4 P4.BA Date calculator
11 P11.BA Sketch.100
12 P12,.BA Which file is loaded program
13 P13.BA Which file, version #2
14 P14.BA Date input routine
17 P17.BA Kill the program called NAME.BA routine
19 P19.BA Looking at Pixels program
21 P21.DO Eleven routines in a text file; cut and paste to separate
29 P29.BA Random Generator test
31 P31.BA Program to text for ideal distribution of numbers
32 P32.BA Bottom line demo program
40 P40-1.BA Directory search, program #1
40 P40-2.BA Directory poke, program #2
41 P41.BA RAMDIR.100 Ram directory listing program for 100/102
42 P42.BA RAMDIR.200 Ram directory listing program for the 200
44 P44 . BA Break key disable test
45 P45-1.BA Lenny ‘s password program
45 P45-2.,BA Improved password program
48 P48-1.BA CVIDTA.BA Converts data statements in decimal form
48 P48-2.BA CVTHEX.BA Converts data statements in hex form
49 P49,.BA DATA-D.BA Data disassembler
52 P52.BA TELFF2.BA TELCOM formfeed program for the 200
53 P53.BA TELFF1.BA TELCOM formfeed program for the 100/102
59 P59.D0 Two programs for the 100/102
64 P64.D0O Two programs for the 200
69 P69.BA Decimal to Lo/High Hex conversion
70 P70.D0 High memory map for searching and reference
83 P83.D0O ROM address map for searching and reference
98

